Spatial heterogeneity of soil organic carbon in tree-based intercropping systems in Quebec and Ontario, Canada

Land use affects the carbon sequestration potential of soils across landscapes. Tree-based intercropping (TBI) systems where annual crops are grown between established tree rows are expected to exhibit spatial heterogeneity in the soil organic carbon (SOC) content due to differences in carbon input...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agroforestry systems 2010-07, Vol.79 (3), p.343-353
Hauptverfasser: Bambrick, Amanda D, Whalen, Joann K, Bradley, Robert L, Cogliastro, Alain, Gordon, Andrew M, Olivier, Alain, Thevathasan, Naresh V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Land use affects the carbon sequestration potential of soils across landscapes. Tree-based intercropping (TBI) systems where annual crops are grown between established tree rows are expected to exhibit spatial heterogeneity in the soil organic carbon (SOC) content due to differences in carbon input and decomposition rates of litter from trees and herbaceous plants. This study aimed to quantify variability in the SOC of TBI systems, compare the SOC content of TBI and nearby conventional agroecosystems, and determine if SOC was related to soil fertility. The TBI research sites were established 4 years (St. Paulin and St. Edouard, Quebec, Canada), 8 years (St. Remi, Quebec, Canada) and 21 years (Guelph, Ontario, Canada) before soil samples were collected for this study. The SOC content was greater within 0.75 m of the tree row than in the intercropped space at the St. Edouard and St. Remi sites. At the Guelph site, the SOC was spatially heterogeneous in plots with Norway spruce (Picea abies L.) but not hybrid poplar (Populus deltoides × P. nigra clone DN-177), probably due to litterfall distribution. Formerly a tree plantation, the TBI system at St. Remi contained 77% more SOC than a nearby conventional agroecosystem, while there was 12% more SOC in the TBI system than the conventional agroecosystem at Guelph. There was no difference in the SOC content of 4-year old TBI sites and nearby conventional agroecosystems. However, an increase in SOC at all TBI sites was positively related to the plant-available N concentrations, indicating the benefit of temperate TBI systems for soil fertility.
ISSN:0167-4366
1572-9680
DOI:10.1007/s10457-010-9305-z