Detection of Pharmaceuticals and Personal Care Products in Agricultural Soils Receiving Biosolids Application
Increasing research has suggested that biosolids generated from municipal wastewater treatment can be a major sink for many pharmaceuticals and personal care products (PPCPs) and their land application potentially introduces these contaminants into the terrestrial and aquatic environments. In this s...
Gespeichert in:
Veröffentlicht in: | Clean : soil, air, water air, water, 2010-03, Vol.38 (3), p.230-237 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Increasing research has suggested that biosolids generated from municipal wastewater treatment can be a major sink for many pharmaceuticals and personal care products (PPCPs) and their land application potentially introduces these contaminants into the terrestrial and aquatic environments. In this study, methods were developed for the analysis of 14 PPCPs in biosolids and soils using pressurized liquid extraction, solid phase extraction and liquid chromatography‐tandem mass spectrometry. Recoveries were over 50% for all analytes except diphenhydramine (˜30%) in soils. Soil properties or type of biosolids showed minor effects on method recoveries. Estimated method limits of quantification (LOQ) range from 0.1–15 ng g–1 for soil and 0.3–27 ng g–1 for biosolids. A field study utilizing the methods revealed that other than carbamazepine‐10,11‐epoxide, all targeted compounds were detected in biosolids. Diphenhydramine, fluoxetine, triclosan and triclocarban were detected up to the μg g–1 range with the highest concentration of 23 μg g–1 for triclocarban. Seven of the PCCPs found in biosolids were also detected in agricultural soils amended with these biosolids and several (carbamazepine, diphenhydramine, and triclocarban) appeared to be persistent in soils. Triclocarban was also found most abundant in soils with the highest average concentration of 0.2 μg g–1 while the rest of compounds were in the lower ng g–1 range. Generally, the concentrations found on the fields were 2–3 degrees of magnitude lower than in the biosolids, which is likely to be due to dilution, degradation and leaching processes.
Research Articles: Ongoing research has suggested that biosolids generated from municipal wastewater treatment can be a major sink for many pharmaceuticals and personal care products (PPCPs) and their land application potentially introduces these contaminants into the terrestrial and aquatic environments. Methods are developed for the analysis of 14 PPCPs in biosolids and soils using pressurized liquid extraction, solid phase extraction and liquid chromatography‐tandem mass spectrometry. |
---|---|
ISSN: | 1863-0650 1863-0669 |
DOI: | 10.1002/clen.200900263 |