maximum age of Hawaiian terrestrial lineages: geological constraints from Kōko Seamount
To determine if Kōko Seamount submerged below sea level before Kure Island and Pearl and Hermes Reef formed, resulting in a period in which there were no extant islands. A period with no islands would eliminate prior terrestrial and shallow marine biotas that could migrate from island to island and...
Gespeichert in:
Veröffentlicht in: | Journal of biogeography 2010-06, Vol.37 (6), p.1022-1033 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To determine if Kōko Seamount submerged below sea level before Kure Island and Pearl and Hermes Reef formed, resulting in a period in which there were no extant islands. A period with no islands would eliminate prior terrestrial and shallow marine biotas that could migrate from island to island and require a restart of colonization from distant shores to populate the younger islands of the Hawaiian volcanic chain. Emperor Seamount Chain, north-central Pacific Ocean. We estimate subsidence rates for Kōko Seamount using ages determined from fossil large foraminifera and Sr-isotopes, and maximum depths using palaeodepth estimates based on coralline algae. These data are combined with palaeolatitude changes as the Pacific Plate moved northwards, sea level variations, and sea surface temperature variations at the seamount through time to reconstruct the time and causes of submergence. Rounded carbonate clasts include three facies: zooxanthelate corals, bioclastic packstones to rudstones, and rhodolith floatstones. Two rudstones contain relatively deep-water, coralline algal rhodoliths and large foraminifera indicative of Aquitanian (20.4-20 Ma) and Burdigalian (20-16 Ma) stages of the Early Miocene, consistent with Sr-isotope ages of algae and one sample of large foraminifera. Corals grew on Kōko Seamount from c. 50 to 27.1 ± 0.4 Ma, the youngest Sr-isotope age of a coral sample. These shallow, warm-water coral reefs came under increasing stress as the volcano subsided at 0.012 ± 0.003 mm yr⁻¹, and migrated northwards, and as global climate cooled. The summit submerged and shallow coral reef growth ceased before 29 Ma, probably around 33 Ma. The volcano continued its slow subsidence, and deep-water carbonates accumulated until they too were unable to keep pace, dying out at c. 16 Ma. The final submergence of the summit of Kōko Seamount by about 33 Ma confirms that biota on older Hawaiian-Emperor Islands could not have migrated from island to island along the entire chain to eventually colonize the present Hawaiian Islands. There was a period between at least 33 and 29 Ma in which no islands existed, and distant colonization had to repopulate the younger portion of the Hawaiian chain, which began to emerge between about 29 and 23 Ma. |
---|---|
ISSN: | 0305-0270 1365-2699 |
DOI: | 10.1111/j.1365-2699.2009.02235.x |