Striking Activation of NALT and Nasal Passages Lymphocytes Induced by Intranasal Immunization with Cry1Ac protoxin

Cry1Ac protoxin from Bacillus thuringiensis is a potent mucosal immunogen and adjuvant. When delivered intranasally (i.n.) Cry1Ac elicits significant antibody response and is able to improve vaccination against Naegleria fowleri infection, but the functional effects occurring in nasal lymphocytes wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of immunology 2010-03, Vol.71 (3), p.159-168
Hauptverfasser: Rodriguez-Monroy, M.A, Moreno-Fierros, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cry1Ac protoxin from Bacillus thuringiensis is a potent mucosal immunogen and adjuvant. When delivered intranasally (i.n.) Cry1Ac elicits significant antibody response and is able to improve vaccination against Naegleria fowleri infection, but the functional effects occurring in nasal lymphocytes when this protein is administered alone have not been determined. Here, we investigated the effects of i.n. immunization with Cry1Ac on antibody production, lymphocyte activation and cytokine production in lymphocytes from nasal-associated lymphoid tissue (NALT) and nasal passages (NP). Our results show that i.n. immunization with Cry1Ac induced significant specific IgA and IgG cell responses, especially in NP. Besides, it increased the proportion of lymphocytes expressing the activation markers CD25 and CD69 in both nasal tissues, but differently. CD25 was increased in B cells along with CD4 and CD8 T cells from NALT and NP, while CD69 was increased in B cells from both tissues but only in CD4 T cells from NP. Finally, we found that Cry1Ac augmented especially a Th2 profile of cytokines, as the proportion of T cells that spontaneously produced IL-4, IL-5 and IL-10 was increased and this effect was higher in NP than in NALT. These data contribute to explain the potent immunogenicity of Cry1Ac via i.n. route.
ISSN:0300-9475
1365-3083
DOI:10.1111/j.1365-3083.2009.02358.x