Should dialysis modalities be designed to remove specific uremic toxins?
The definition of optimal dialysis therapy remains elusive. Randomized clinical trials have neither supported using urea as a surrogate marker for uremic toxicity nor provided clear cut evidence in favor of larger solutes. Thus, where to focus resources in the development of new membranes, and thera...
Gespeichert in:
Veröffentlicht in: | Seminars in dialysis 2009-07, Vol.22 (4), p.454-457 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The definition of optimal dialysis therapy remains elusive. Randomized clinical trials have neither supported using urea as a surrogate marker for uremic toxicity nor provided clear cut evidence in favor of larger solutes. Thus, where to focus resources in the development of new membranes, and therapies remains unclear. Three basic questions remain unanswered: (i) what solute(s) should be used as a marker for optimal dialysis; (ii) should dialytic therapies be designed to remove a specific solute; and (iii) how can current therapies be modified to provide better control of uremic toxicity? Identification of a single, well-defined uremic toxin appears to be unlikely as new analytical tools reveal an increasingly complex uremic milieu. As a result, it is probable that membranes and therapies should be designed for the nonspecific removal of a wide variety of solutes retained in uremia. Removal of the widest range of solutes can best be achieved using existing therapies that incorporate convection in conjunction with longer treatment times and more frequent treatments. Membranes capable of removing solutes over an expanded effective molecular size range can already be fabricated; however, their use will require novel approaches to conserve proteins, such as albumin. |
---|---|
ISSN: | 0894-0959 1525-139X |
DOI: | 10.1111/j.1525-139X.2009.00599.x |