A short interval result for the exponential divisor function 1
The integer d = Π^sup s^^sub i=1^P^sup b^sub i^^^sub i^ is called an exponential divisor of n = Π^sup s^^sub i=1^P^sup a^sub i^^^sub i^ if b^sub i^|a^sub i^ for every i ∈ 1,2,...,s. Let τ^sup (e)^(n) denote the number of exponential divisors of n, where τ^sup (e)^(1) = 1 by convention. In this paper...
Gespeichert in:
Veröffentlicht in: | Scientia magna 2009-10, Vol.5 (4), p.52-52 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The integer d = Π^sup s^^sub i=1^P^sup b^sub i^^^sub i^ is called an exponential divisor of n = Π^sup s^^sub i=1^P^sup a^sub i^^^sub i^ if b^sub i^|a^sub i^ for every i ∈ 1,2,...,s. Let τ^sup (e)^(n) denote the number of exponential divisors of n, where τ^sup (e)^(1) = 1 by convention. In this paper we shall establish a short interval result for r-th power of the function τ^sup (e)^ where r ≥ 1 is a fixed integer. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1556-6706 |