Reversibly Deformable and Mechanically Tunable Fluidic Antennas

This paper describes the fabrication and characterization of fluidic dipole antennas that are reconfigurable, reversibly deformable, and mechanically tunable. The antennas consist of a fluid metal alloy injected into microfluidic channels comprising a silicone elastomer. By employing soft lithograph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2009-11, Vol.19 (22), p.3632-3637
Hauptverfasser: So, Ju-Hee, Thelen, Jacob, Qusba, Amit, Hayes, Gerard J., Lazzi, Gianluca, Dickey, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes the fabrication and characterization of fluidic dipole antennas that are reconfigurable, reversibly deformable, and mechanically tunable. The antennas consist of a fluid metal alloy injected into microfluidic channels comprising a silicone elastomer. By employing soft lithographic, rapid prototyping methods, the fluidic antennas are easier to fabricate than conventional copper antennas. The fluidic dipole radiates with ≈90% efficiency over a broad frequency range (1910–1990 MHz), which is equivalent to the expected efficiency for a similar dipole with solid metallic elements such as copper. The metal, eutectic gallium indium (EGaIn), is a low‐viscosity liquid at room temperature and possesses a thin oxide skin that provides mechanical stability to the fluid within the elastomeric channels. Because the conductive element of the antenna is a fluid, the mechanical properties and shape of the antenna are defined by the elastomeric channels, which are composed of polydimethylsiloxane (PDMS). The antennas can withstand mechanical deformation (stretching, bending, rolling, and twisting) and return to their original state after removal of an applied stress. The ability of the fluid metal to flow during deformation of the PDMS ensures electrical continuity. The shape and thus, the function of the antenna, is reconfigurable. The resonant frequency can be tuned mechanically by elongating the antenna via stretching without any hysteresis during strain relaxation, and the measured resonant frequency as a function of strain shows excellent agreement (±0.1–0.3% error) with that predicted by theoretical finite element modeling. The antennas are therefore sensors of strain. The fluid metal also facilitates self‐healing in response to sharp cuts through the antenna. Highly flexible antennas are formed by filling an elastomeric microfluidic channel with a liquid metal alloy. The antennas can be tuned mechanically by elongating the antenna and are therefore sensors of strain. The liquid metal maintains electrical continuity during deformation, and the spectral response shows no hysteresis before and after stretching.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.200900604