Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss
Desiccation of plants during drought can be detrimental to agricultural production. The phytohormone abscisic acid (ABA) reduces water loss by triggering stomatal pore closure in leaves, a process requiring ion-channel modulation by cytoplasmic proteins. Deletion of the Arabidopsis farnesyltransfera...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1998-10, Vol.282 (5387), p.287-290 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Desiccation of plants during drought can be detrimental to agricultural production. The phytohormone abscisic acid (ABA) reduces water loss by triggering stomatal pore closure in leaves, a process requiring ion-channel modulation by cytoplasmic proteins. Deletion of the Arabidopsis farnesyltransferase gene ERA1 or application of farnesyltransferase inhibitors resulted in ABA hypersensitivity of guard cell anion-channel activation and of stomatal closing. ERA1 was expressed in guard cells. Double-mutant analyses of era1 with the ABA-insensitive mutants abi1 and abi2 showed that era1 suppresses the ABA-insensitive phenotypes. Moreover, era1 plants exhibited a reduction in transpirational water loss during drought treatment |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.282.5387.287 |