P-adic logarithmic forms and group varieties III
Let α1, ... , α n be non-zero algebraic numbers and K be a number field containing α1, ... , α n . Denote by p a prime ideal of the ring of integers in K. We present completely explicit upper bounds for , where with b 1, ... , b n being rational integers and Ξ ≠ 1. The cost n!/2 n−1 of the classical...
Gespeichert in:
Veröffentlicht in: | Forum mathematicum 2007-03, Vol.19 (2), p.187-280 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let α1, ... , α n be non-zero algebraic numbers and K be a number field containing α1, ... , α n . Denote by p a prime ideal of the ring of integers in K. We present completely explicit upper bounds for , where with b 1, ... , b n being rational integers and Ξ ≠ 1. The cost n!/2 n−1 of the classical Kummer descent has been removed from the previous best upper bounds. |
---|---|
ISSN: | 0933-7741 1435-5337 |
DOI: | 10.1515/FORUM.2007.009 |