P-adic logarithmic forms and group varieties III

Let α1, ... , α n be non-zero algebraic numbers and K be a number field containing α1, ... , α n . Denote by p a prime ideal of the ring of integers in K. We present completely explicit upper bounds for , where with b 1, ... , b n being rational integers and Ξ ≠ 1. The cost n!/2 n−1 of the classical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum mathematicum 2007-03, Vol.19 (2), p.187-280
1. Verfasser: Yu, Kunrui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let α1, ... , α n be non-zero algebraic numbers and K be a number field containing α1, ... , α n . Denote by p a prime ideal of the ring of integers in K. We present completely explicit upper bounds for , where with b 1, ... , b n being rational integers and Ξ ≠ 1. The cost n!/2 n−1 of the classical Kummer descent has been removed from the previous best upper bounds.
ISSN:0933-7741
1435-5337
DOI:10.1515/FORUM.2007.009