Photosynthetic control of chloroplast gene expression

Redox chemistry-the transfer of electrons or hydrogen atoms-is central to energy conversion in respiration and photosynthesis. In photosynthesis in chloroplasts, two separate, light-driven reactions, termed photosystem I and photosystem II, are connected in series by a chain of electron carriers. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 1999-02, Vol.397 (6720), p.625-628
Hauptverfasser: Allen, John F, Pfannschmidt, Thomas, Nilsson, Anders
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Redox chemistry-the transfer of electrons or hydrogen atoms-is central to energy conversion in respiration and photosynthesis. In photosynthesis in chloroplasts, two separate, light-driven reactions, termed photosystem I and photosystem II, are connected in series by a chain of electron carriers. The redox state of one connecting electron carrier, plastoquinone, governs the distribution of absorbed light energy between photosystems I and II by controlling the phosphorylation of a mobile, light-harvesting, pigment-protein complex. Here we show that the redox state of plastoquinone also controls the rate of transcription of genes encoding reaction-centre apoproteins of photosystem I and photosystem II. As a result of this control, the stoichiometry between the two photosystems changes in a way that counteracts the inefficiency produced when either photosystem limits the rate of the other. In eukaryotes, these reaction-centre proteins are encoded universally within the chloroplast. Photosynthetic control of chloroplast gene expression indicates an evolutionary explanation for this rule: the redox signal-transduction pathway can be short, the response rapid, and the control direct.
ISSN:0028-0836
1476-4687
DOI:10.1038/17624