Universal localizations embedded in power-series rings
Let R be a ring, let F be a free group, and let X be a basis of F. Let ε : RF → R denote the usual augmentation map for the group ring RF, let X∂ := {x − 1 | x ∈ X} ⊆ RF, let Σ denote the set of matrices over RF that are sent to invertible matrices by ε, and let (RF)Σ−1 denote the universal localiza...
Gespeichert in:
Veröffentlicht in: | Forum mathematicum 2007-03, Vol.19 (2), p.365-378 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378 |
---|---|
container_issue | 2 |
container_start_page | 365 |
container_title | Forum mathematicum |
container_volume | 19 |
creator | Ara, Pere Dicks, Warren |
description | Let R be a ring, let F be a free group, and let X be a basis of F. Let ε : RF → R denote the usual augmentation map for the group ring RF, let X∂ := {x − 1 | x ∈ X} ⊆ RF, let Σ denote the set of matrices over RF that are sent to invertible matrices by ε, and let (RF)Σ−1 denote the universal localization of RF at Σ. A classic result of Magnus and Fox gives an embedding of RF in the power-series ring R〈〈X∂〉〉. We show that if R is a commutative Bezout domain, then the division closure of the image of RF in R〈〈X∂〉〉 is a universal localization of RF at Σ. We also show that if R is a von Neumann regular ring or a commutative Bezout domain, then (RF)Σ−1 is stably flat as an RF-ring, in the sense of Neeman-Ranicki. |
doi_str_mv | 10.1515/FORUM.2007.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743719188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743719188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ad90672663384fd3000843dd96eb40c2f1d22a822fdb92e1b5d7a2585fa1e8083</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgUQprMyRGJgSbJ8dJyOqaAEVlaJ2tpz4glzSpNgpX7-elCIGplue9-70EnLOaMIkk1fj2dPyIeGUqoQyeUAGTICMJYA6JAOaA8RKCXZMTkJY0V5QoAOSLhv3hj6YOqrb0tTuy3SubUKE6wKtRRu5Jtq07-jjgN5hiLxrnsMpOapMHfDsdw7JcnyzGN3G09nkbnQ9jcv-bBcbm9NU8TQFyERlgVKaCbA2T7EQtOQVs5ybjPPKFjlHVkirDJeZrAzDjGYwJJf7vRvfvm4xdHrtQol1bRpst0ErAYrlLNvJi39y1W590z-n-3YglyAF61WyV6VvQ_BY6Y13a-M_NaM7J_VPi3rXou476gPxPuBChx9_2vgXnSpQUs8XQit6P52PJo-awzdyZXKb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513953541</pqid></control><display><type>article</type><title>Universal localizations embedded in power-series rings</title><source>De Gruyter journals</source><creator>Ara, Pere ; Dicks, Warren</creator><creatorcontrib>Ara, Pere ; Dicks, Warren</creatorcontrib><description>Let R be a ring, let F be a free group, and let X be a basis of F. Let ε : RF → R denote the usual augmentation map for the group ring RF, let X∂ := {x − 1 | x ∈ X} ⊆ RF, let Σ denote the set of matrices over RF that are sent to invertible matrices by ε, and let (RF)Σ−1 denote the universal localization of RF at Σ. A classic result of Magnus and Fox gives an embedding of RF in the power-series ring R〈〈X∂〉〉. We show that if R is a commutative Bezout domain, then the division closure of the image of RF in R〈〈X∂〉〉 is a universal localization of RF at Σ. We also show that if R is a von Neumann regular ring or a commutative Bezout domain, then (RF)Σ−1 is stably flat as an RF-ring, in the sense of Neeman-Ranicki.</description><identifier>ISSN: 0933-7741</identifier><identifier>EISSN: 1435-5337</identifier><identifier>DOI: 10.1515/FORUM.2007.015</identifier><language>eng</language><publisher>Berlin: Walter de Gruyter</publisher><ispartof>Forum mathematicum, 2007-03, Vol.19 (2), p.365-378</ispartof><rights>Copyright Walter de Gruyter GmbH Mar 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ad90672663384fd3000843dd96eb40c2f1d22a822fdb92e1b5d7a2585fa1e8083</citedby><cites>FETCH-LOGICAL-c337t-ad90672663384fd3000843dd96eb40c2f1d22a822fdb92e1b5d7a2585fa1e8083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ara, Pere</creatorcontrib><creatorcontrib>Dicks, Warren</creatorcontrib><title>Universal localizations embedded in power-series rings</title><title>Forum mathematicum</title><addtitle>Forum Mathematicum</addtitle><description>Let R be a ring, let F be a free group, and let X be a basis of F. Let ε : RF → R denote the usual augmentation map for the group ring RF, let X∂ := {x − 1 | x ∈ X} ⊆ RF, let Σ denote the set of matrices over RF that are sent to invertible matrices by ε, and let (RF)Σ−1 denote the universal localization of RF at Σ. A classic result of Magnus and Fox gives an embedding of RF in the power-series ring R〈〈X∂〉〉. We show that if R is a commutative Bezout domain, then the division closure of the image of RF in R〈〈X∂〉〉 is a universal localization of RF at Σ. We also show that if R is a von Neumann regular ring or a commutative Bezout domain, then (RF)Σ−1 is stably flat as an RF-ring, in the sense of Neeman-Ranicki.</description><issn>0933-7741</issn><issn>1435-5337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQBmALgUQprMyRGJgSbJ8dJyOqaAEVlaJ2tpz4glzSpNgpX7-elCIGplue9-70EnLOaMIkk1fj2dPyIeGUqoQyeUAGTICMJYA6JAOaA8RKCXZMTkJY0V5QoAOSLhv3hj6YOqrb0tTuy3SubUKE6wKtRRu5Jtq07-jjgN5hiLxrnsMpOapMHfDsdw7JcnyzGN3G09nkbnQ9jcv-bBcbm9NU8TQFyERlgVKaCbA2T7EQtOQVs5ybjPPKFjlHVkirDJeZrAzDjGYwJJf7vRvfvm4xdHrtQol1bRpst0ErAYrlLNvJi39y1W590z-n-3YglyAF61WyV6VvQ_BY6Y13a-M_NaM7J_VPi3rXou476gPxPuBChx9_2vgXnSpQUs8XQit6P52PJo-awzdyZXKb</recordid><startdate>20070320</startdate><enddate>20070320</enddate><creator>Ara, Pere</creator><creator>Dicks, Warren</creator><general>Walter de Gruyter</general><general>Walter de Gruyter GmbH</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070320</creationdate><title>Universal localizations embedded in power-series rings</title><author>Ara, Pere ; Dicks, Warren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ad90672663384fd3000843dd96eb40c2f1d22a822fdb92e1b5d7a2585fa1e8083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ara, Pere</creatorcontrib><creatorcontrib>Dicks, Warren</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Forum mathematicum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ara, Pere</au><au>Dicks, Warren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal localizations embedded in power-series rings</atitle><jtitle>Forum mathematicum</jtitle><addtitle>Forum Mathematicum</addtitle><date>2007-03-20</date><risdate>2007</risdate><volume>19</volume><issue>2</issue><spage>365</spage><epage>378</epage><pages>365-378</pages><issn>0933-7741</issn><eissn>1435-5337</eissn><abstract>Let R be a ring, let F be a free group, and let X be a basis of F. Let ε : RF → R denote the usual augmentation map for the group ring RF, let X∂ := {x − 1 | x ∈ X} ⊆ RF, let Σ denote the set of matrices over RF that are sent to invertible matrices by ε, and let (RF)Σ−1 denote the universal localization of RF at Σ. A classic result of Magnus and Fox gives an embedding of RF in the power-series ring R〈〈X∂〉〉. We show that if R is a commutative Bezout domain, then the division closure of the image of RF in R〈〈X∂〉〉 is a universal localization of RF at Σ. We also show that if R is a von Neumann regular ring or a commutative Bezout domain, then (RF)Σ−1 is stably flat as an RF-ring, in the sense of Neeman-Ranicki.</abstract><cop>Berlin</cop><pub>Walter de Gruyter</pub><doi>10.1515/FORUM.2007.015</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-7741 |
ispartof | Forum mathematicum, 2007-03, Vol.19 (2), p.365-378 |
issn | 0933-7741 1435-5337 |
language | eng |
recordid | cdi_proquest_miscellaneous_743719188 |
source | De Gruyter journals |
title | Universal localizations embedded in power-series rings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20localizations%20embedded%20in%20power-series%20rings&rft.jtitle=Forum%20mathematicum&rft.au=Ara,%20Pere&rft.date=2007-03-20&rft.volume=19&rft.issue=2&rft.spage=365&rft.epage=378&rft.pages=365-378&rft.issn=0933-7741&rft.eissn=1435-5337&rft_id=info:doi/10.1515/FORUM.2007.015&rft_dat=%3Cproquest_cross%3E743719188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513953541&rft_id=info:pmid/&rfr_iscdi=true |