Universal localizations embedded in power-series rings
Let R be a ring, let F be a free group, and let X be a basis of F. Let ε : RF → R denote the usual augmentation map for the group ring RF, let X∂ := {x − 1 | x ∈ X} ⊆ RF, let Σ denote the set of matrices over RF that are sent to invertible matrices by ε, and let (RF)Σ−1 denote the universal localiza...
Gespeichert in:
Veröffentlicht in: | Forum mathematicum 2007-03, Vol.19 (2), p.365-378 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let R be a ring, let F be a free group, and let X be a basis of F. Let ε : RF → R denote the usual augmentation map for the group ring RF, let X∂ := {x − 1 | x ∈ X} ⊆ RF, let Σ denote the set of matrices over RF that are sent to invertible matrices by ε, and let (RF)Σ−1 denote the universal localization of RF at Σ. A classic result of Magnus and Fox gives an embedding of RF in the power-series ring R〈〈X∂〉〉. We show that if R is a commutative Bezout domain, then the division closure of the image of RF in R〈〈X∂〉〉 is a universal localization of RF at Σ. We also show that if R is a von Neumann regular ring or a commutative Bezout domain, then (RF)Σ−1 is stably flat as an RF-ring, in the sense of Neeman-Ranicki. |
---|---|
ISSN: | 0933-7741 1435-5337 |
DOI: | 10.1515/FORUM.2007.015 |