A Novel Partial-Ground-Plane-Based MOSFET on Selective Buried Oxide: 2-D Simulation Study

A novel partial-ground-plane (PGP)-based MOSFET on a selective buried oxide (SELBOX), named PGP-SELBOX, is proposed. An extensive simulation study and the comparative analysis of the key characteristics of the PGP-SELBOX, the SELBOX, and the conventional silicon-on-insulator (SOI) devices has been p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2010-03, Vol.57 (3), p.671-680
Hauptverfasser: Loan, S.A., Qureshi, S., Iyer, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel partial-ground-plane (PGP)-based MOSFET on a selective buried oxide (SELBOX), named PGP-SELBOX, is proposed. An extensive simulation study and the comparative analysis of the key characteristics of the PGP-SELBOX, the SELBOX, and the conventional silicon-on-insulator (SOI) devices has been performed using the 2-D device simulator Medici. The simulations have revealed that the PGP-SELBOX and the SELBOX structures are more thermally efficient than the conventional SOI device. Further, the magnitude of the short-channel effects (SCEs) is lower in the PGP-SELBOX in comparison to the SELBOX device. Though the SCE suppression is best in the thin-film SOI device, the PGP-SELBOX shows better improvement in SCE suppression in comparison to the SELBOX device. The suppression of self-heating effects and SCEs in the PGP-SELBOX results in a significant reduction in leakage current. An improved performance in terms of I ON / I OFF ratio is obtained in the PGP-SELBOX device. Further, the fT values of the PGP-SELBOX are comparable to those of the SELBOX and the SOI devices. A process flow in which a low-dose separation by implantation of oxygen technique can be employed for the fabrication of the PGP-SELBOX is also proposed.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2009.2039545