An Interior-Point Algorithm for Nonconvex Nonlinear Programming

The paper describes an interior-point algorithm for nonconvex nonlinear programming which is a direct extension of interior-point methods for linear and quadratic programming. Major modifications include a merit function and an altered search direction to ensure that a descent direction for the meri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 1999-04, Vol.13 (1-3), p.231-252
Hauptverfasser: Vanderbei, Robert J, Shanno, David F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper describes an interior-point algorithm for nonconvex nonlinear programming which is a direct extension of interior-point methods for linear and quadratic programming. Major modifications include a merit function and an altered search direction to ensure that a descent direction for the merit function is obtained. Preliminary numerical testing indicates that the method is robust. Further, numerical comparisons with MINOS and LANCELOT show that the method is efficient, and has the promise of greatly reducing solution times on at least some classes of models. [PUBLICATION ABSTRACT]
ISSN:0926-6003
1573-2894
DOI:10.1023/A:1008677427361