Analysis of the horizontal Laplacian for the Hopf fibration
We study the horizontal Laplacian Δ H associated to the Hopf fibration S3 → S2 with arbitrary Chern number k. We use representation theory to calculate the spectrum, describe the heat kernel and obtain the complete heat trace asymptotics of Δ H . We express the Green functions for associated Poisson...
Gespeichert in:
Veröffentlicht in: | Forum mathematicum 2005-11, Vol.17 (6), p.903-920 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the horizontal Laplacian Δ H associated to the Hopf fibration S3 → S2 with arbitrary Chern number k. We use representation theory to calculate the spectrum, describe the heat kernel and obtain the complete heat trace asymptotics of Δ H . We express the Green functions for associated Poisson semigroups and obtain bounds for their contraction properties and Sobolev inequalities for Δ H . The bounds and inequalities improve as |k | increases. |
---|---|
ISSN: | 0933-7741 1435-5337 |
DOI: | 10.1515/form.2005.17.6.903 |