Analysis of the horizontal Laplacian for the Hopf fibration

We study the horizontal Laplacian Δ H associated to the Hopf fibration S3 → S2 with arbitrary Chern number k. We use representation theory to calculate the spectrum, describe the heat kernel and obtain the complete heat trace asymptotics of Δ H . We express the Green functions for associated Poisson...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum mathematicum 2005-11, Vol.17 (6), p.903-920
1. Verfasser: Bauer, Robert O.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the horizontal Laplacian Δ H associated to the Hopf fibration S3 → S2 with arbitrary Chern number k. We use representation theory to calculate the spectrum, describe the heat kernel and obtain the complete heat trace asymptotics of Δ H . We express the Green functions for associated Poisson semigroups and obtain bounds for their contraction properties and Sobolev inequalities for Δ H . The bounds and inequalities improve as |k | increases.
ISSN:0933-7741
1435-5337
DOI:10.1515/form.2005.17.6.903