Improving tensile and fatigue properties of Sn–58Bi/Cu solder joints through alloying substrate

To eliminate the Bi segregation and interfacial embrittlement of the SnBi/Cu joints, we deliberately added some Ag or Zn elements into the Cu substrate. Then, the reliability of the SnBi/Cu–X (X = Ag or Zn) solder joints was evaluated by investigating their interfacial reactions, tensile property, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2010-02, Vol.25 (2), p.303-314
Hauptverfasser: Zhang, QingKe, Zou, HeFei, Zhang, Zhe-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To eliminate the Bi segregation and interfacial embrittlement of the SnBi/Cu joints, we deliberately added some Ag or Zn elements into the Cu substrate. Then, the reliability of the SnBi/Cu–X (X = Ag or Zn) solder joints was evaluated by investigating their interfacial reactions, tensile property, and fatigue life compared with those of the SnBi/Cu and SnAg/Cu joints. The experimental results demonstrate that even after aging for a long time, the addition of the Ag or Zn elements into the Cu substrate can effectively eliminate the interfacial Bi embrittlement of the SnBi/Cu–X joints under tensile or fatigue loadings. Compared with the conventional SnAg/Cu joints, the SnBi/Cu–X joints exhibit higher adhesive strength and comparable fatigue resistance. Finally, the fatigue and fracture mechanisms of the SnBi/Cu–X solder joints were discussed qualitatively. The current findings may pave the new way for the Sn–Bi solder widely used in the electronic interconnection in the future.
ISSN:0884-2914
2044-5326
DOI:10.1557/JMR.2010.0035