Multiplicative mappings at unit operator on B(H) 1
Let A be a subalgebra of B(H). We say that a linear mapping [straight phi] from A into itself is a multiplicative mapping at Z(Z ∈ A) if [straight phi](ST) = [straight phi](S)[straight phi](T) for any S, T ∈ A with ST = Z. Let H be an infinite dimensional complex Hilbert space, and let [straight phi...
Gespeichert in:
Veröffentlicht in: | Scientia magna 2009-10, Vol.5 (4), p.57-57 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A be a subalgebra of B(H). We say that a linear mapping [straight phi] from A into itself is a multiplicative mapping at Z(Z ∈ A) if [straight phi](ST) = [straight phi](S)[straight phi](T) for any S, T ∈ A with ST = Z. Let H be an infinite dimensional complex Hilbert space, and let [straight phi] be a surjective linear map on B(H). In this paper, we prove that if [straight phi] is a multiplicative mapping at I and continuous in the weak operator topology, then [straight phi] is an automorphism. We also prove that if [straight phi] is a weak continuous multiplicative mapping at any invertible operator with [straight phi](I) = I then [straight phi] is an automorphism. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1556-6706 |