Liquid Mixing in Thick-Slag-Covered Metallurgical Baths—Blending of Bath

Liquid mixing in bottom-blown, gas-stirred reactors has a significant impact on process efficiency and product quality. Cold physical models were used to simulate liquid bath mixing behavior covered with a thick slag layer. The dependence of blending time on specific energy input rate, slag height,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2010-02, Vol.41 (1), p.86-93
Hauptverfasser: Tafaghodi Khajavi, Leili, Barati, Mansoor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liquid mixing in bottom-blown, gas-stirred reactors has a significant impact on process efficiency and product quality. Cold physical models were used to simulate liquid bath mixing behavior covered with a thick slag layer. The dependence of blending time on specific energy input rate, slag height, and physical properties of metal and slag was studied. A new parameter, called the “effective bath height,” is defined as a function of the slag and metal thicknesses and their relative densities to develop a unified correlation for blending time of slag-covered baths and baths without slags. Furthermore, energy dissipation associated with an increase in interfacial area was evaluated.
ISSN:1073-5615
1543-1916
DOI:10.1007/s11663-009-9324-1