Gradient-Like Observers for Invariant Dynamics on a Lie Group

This paper proposes a design methodology for non-linear state observers for invariant kinematic systems posed on finite dimensional connected Lie groups, and studies the associated fundamental system structure. The concept of synchrony of two dynamical systems is specialized to systems on Lie groups...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2010-02, Vol.55 (2), p.367-377
Hauptverfasser: Lageman, C., Trumpf, J., Mahony, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a design methodology for non-linear state observers for invariant kinematic systems posed on finite dimensional connected Lie groups, and studies the associated fundamental system structure. The concept of synchrony of two dynamical systems is specialized to systems on Lie groups. For invariant systems this leads to a general factorization theorem of a nonlinear observer into a synchronous (internal model) term and an innovation term. The synchronous term is fully specified by the system model. We propose a design methodology for the innovation term based on gradient-like terms derived from invariant or non-invariant cost functions. The resulting nonlinear observers have strong (almost) global convergence properties and examples are used to demonstrate the relevance of the proposed approach.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2009.2034937