Fas-Induced Caspase Denitrosylation

Only a few intracellular S-nitrosylated proteins have been identified, and it is unknown if protein S-nitrosylation/denitrosylation is a component of signal transduction cascades. Caspase-3 zymogens were found to be S-nitrosylated on their catalytic-site cysteine in unstimulated human cell lines and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1999-04, Vol.284 (5414), p.651-654
Hauptverfasser: Mannick, Joan B., Hausladen, Alfred, Liu, Limin, Hess, Douglas T., Zeng, Ming, Miao, Qian X., Kane, Laurie S., Gow, Andrew J., Stamler, Jonathan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Only a few intracellular S-nitrosylated proteins have been identified, and it is unknown if protein S-nitrosylation/denitrosylation is a component of signal transduction cascades. Caspase-3 zymogens were found to be S-nitrosylated on their catalytic-site cysteine in unstimulated human cell lines and denitrosylated upon activation of the Fas apoptotic pathway. Decreased caspase-3 S-nitrosylation was associated with an increase in intracellular caspase activity. Fas therefore activates caspase-3 not only by inducing the cleavage of the caspase zymogen to its active subunits, but also by stimulating the denitrosylation of its active-site thiol. Protein S-nitrosylation/denitrosylation can thus serve as a regulatory process in signal transduction pathways.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.284.5414.651