Capacity Analysis for Integrate-and-Fire Neurons With Descending Action Potential Thresholds

Understanding how a biological neuron works has been a major goal in neuroscience. Under the Poisson-excitation assumption, results from earlier study by Suksompong and Berger on the timing jitter in the leaky integrate-and-fire (LIF) model of neurons are used to determine families of neural thresho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2010-02, Vol.56 (2), p.838-851
Hauptverfasser: Suksompong, P., Berger, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding how a biological neuron works has been a major goal in neuroscience. Under the Poisson-excitation assumption, results from earlier study by Suksompong and Berger on the timing jitter in the leaky integrate-and-fire (LIF) model of neurons are used to determine families of neural thresholding functions that are appropriate in certain interesting senses. Next, the neuron is treated as a communication channel for which information-theoretic quantities can be calculated. In particular, the optimal distribution of the Poisson excitation intensity is numerically evaluated along with the corresponding capacity using the Blahut-Arimoto algorithm. Simple formulas which approximate the optimal intensity distribution are given. Furthermore, the Jimbo-Kunisawa algorithm is used to explore energy-efficient operations for neuron. Finally, a rate-matching argument leads to a unique operating condition which turns out to agree with experimentally observed rate.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2009.2037042