Chain transitive sets for flows on flag bundles
We study the chain transitive sets and Morse decompositions of flows on fiber bundles whose fibers are compact homogeneous spaces of Lie groups. The emphasis is put on generalized flag manifolds of semi-simple (and reductive) Lie groups. In this case an algebraic description of the chain transitive...
Gespeichert in:
Veröffentlicht in: | Forum mathematicum 2007-01, Vol.19 (1), p.19-60 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | Forum mathematicum |
container_volume | 19 |
creator | Barros, Carlos J. Braga Martin, Luiz A. B. San |
description | We study the chain transitive sets and Morse decompositions of flows on fiber bundles whose fibers are compact homogeneous spaces of Lie groups. The emphasis is put on generalized flag manifolds of semi-simple (and reductive) Lie groups. In this case an algebraic description of the chain transitive sets is given. Our approach consists in shadowing the flow by semigroups of homeomorphisms to take advantage of the good properties of the semigroup actions on flag manifolds. The description of the chain components in the flag bundles generalizes a theorem of Selgrade for projective bundles with an independent proof. |
doi_str_mv | 10.1515/FORUM.2007.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743646339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743646339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-6c2ccbcb41060f2a9e0833c4cb77d426d876c69b0f63ccf6ed8b535df27be09b3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqWwMkdiYEpr-_zRjKiiFFRUqNrZsh0bUtKk2Akf_560RQxMd8Pzvnd6ELokeEA44cPJfLF6HFCM5QBjeoR6hAFPOYA8Rj2cAaRSMnKKzmJcY0w4BtxDw_GrLqqkCbqKRVN8uCS6Jia-Dokv68-Y1FW36JfEtFVeuniOTrwuo7v4nX20mtwux9N0Nr-7H9_MUtvda1JhqbXGGkawwJ7qzOERgGXWSJkzKvKRFFZkBnsB1nrh8pHhwHNPpXE4M9BH14febajfWxcbtSmidWWpK1e3UUkGggmArCOv_pHrug1V95zaaRGcEsI7anCgbKhjDM6rbSg2Onwrgvec2utTO32q09cF0kOgiI37-qN1eFNCguTqeckUfVoABTZVD_AD4KtwSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1515652115</pqid></control><display><type>article</type><title>Chain transitive sets for flows on flag bundles</title><source>De Gruyter journals</source><creator>Barros, Carlos J. Braga ; Martin, Luiz A. B. San</creator><creatorcontrib>Barros, Carlos J. Braga ; Martin, Luiz A. B. San</creatorcontrib><description>We study the chain transitive sets and Morse decompositions of flows on fiber bundles whose fibers are compact homogeneous spaces of Lie groups. The emphasis is put on generalized flag manifolds of semi-simple (and reductive) Lie groups. In this case an algebraic description of the chain transitive sets is given. Our approach consists in shadowing the flow by semigroups of homeomorphisms to take advantage of the good properties of the semigroup actions on flag manifolds. The description of the chain components in the flag bundles generalizes a theorem of Selgrade for projective bundles with an independent proof.</description><identifier>ISSN: 0933-7741</identifier><identifier>EISSN: 1435-5337</identifier><identifier>DOI: 10.1515/FORUM.2007.002</identifier><language>eng</language><publisher>Berlin: Walter de Gruyter</publisher><ispartof>Forum mathematicum, 2007-01, Vol.19 (1), p.19-60</ispartof><rights>Copyright Walter de Gruyter GmbH Jan 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-6c2ccbcb41060f2a9e0833c4cb77d426d876c69b0f63ccf6ed8b535df27be09b3</citedby><cites>FETCH-LOGICAL-c337t-6c2ccbcb41060f2a9e0833c4cb77d426d876c69b0f63ccf6ed8b535df27be09b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barros, Carlos J. Braga</creatorcontrib><creatorcontrib>Martin, Luiz A. B. San</creatorcontrib><title>Chain transitive sets for flows on flag bundles</title><title>Forum mathematicum</title><addtitle>Forum Mathematicum</addtitle><description>We study the chain transitive sets and Morse decompositions of flows on fiber bundles whose fibers are compact homogeneous spaces of Lie groups. The emphasis is put on generalized flag manifolds of semi-simple (and reductive) Lie groups. In this case an algebraic description of the chain transitive sets is given. Our approach consists in shadowing the flow by semigroups of homeomorphisms to take advantage of the good properties of the semigroup actions on flag manifolds. The description of the chain components in the flag bundles generalizes a theorem of Selgrade for projective bundles with an independent proof.</description><issn>0933-7741</issn><issn>1435-5337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EEqWwMkdiYEpr-_zRjKiiFFRUqNrZsh0bUtKk2Akf_560RQxMd8Pzvnd6ELokeEA44cPJfLF6HFCM5QBjeoR6hAFPOYA8Rj2cAaRSMnKKzmJcY0w4BtxDw_GrLqqkCbqKRVN8uCS6Jia-Dokv68-Y1FW36JfEtFVeuniOTrwuo7v4nX20mtwux9N0Nr-7H9_MUtvda1JhqbXGGkawwJ7qzOERgGXWSJkzKvKRFFZkBnsB1nrh8pHhwHNPpXE4M9BH14febajfWxcbtSmidWWpK1e3UUkGggmArCOv_pHrug1V95zaaRGcEsI7anCgbKhjDM6rbSg2Onwrgvec2utTO32q09cF0kOgiI37-qN1eFNCguTqeckUfVoABTZVD_AD4KtwSQ</recordid><startdate>20070129</startdate><enddate>20070129</enddate><creator>Barros, Carlos J. Braga</creator><creator>Martin, Luiz A. B. San</creator><general>Walter de Gruyter</general><general>Walter de Gruyter GmbH</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070129</creationdate><title>Chain transitive sets for flows on flag bundles</title><author>Barros, Carlos J. Braga ; Martin, Luiz A. B. San</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-6c2ccbcb41060f2a9e0833c4cb77d426d876c69b0f63ccf6ed8b535df27be09b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barros, Carlos J. Braga</creatorcontrib><creatorcontrib>Martin, Luiz A. B. San</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Forum mathematicum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barros, Carlos J. Braga</au><au>Martin, Luiz A. B. San</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chain transitive sets for flows on flag bundles</atitle><jtitle>Forum mathematicum</jtitle><addtitle>Forum Mathematicum</addtitle><date>2007-01-29</date><risdate>2007</risdate><volume>19</volume><issue>1</issue><spage>19</spage><epage>60</epage><pages>19-60</pages><issn>0933-7741</issn><eissn>1435-5337</eissn><abstract>We study the chain transitive sets and Morse decompositions of flows on fiber bundles whose fibers are compact homogeneous spaces of Lie groups. The emphasis is put on generalized flag manifolds of semi-simple (and reductive) Lie groups. In this case an algebraic description of the chain transitive sets is given. Our approach consists in shadowing the flow by semigroups of homeomorphisms to take advantage of the good properties of the semigroup actions on flag manifolds. The description of the chain components in the flag bundles generalizes a theorem of Selgrade for projective bundles with an independent proof.</abstract><cop>Berlin</cop><pub>Walter de Gruyter</pub><doi>10.1515/FORUM.2007.002</doi><tpages>42</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-7741 |
ispartof | Forum mathematicum, 2007-01, Vol.19 (1), p.19-60 |
issn | 0933-7741 1435-5337 |
language | eng |
recordid | cdi_proquest_miscellaneous_743646339 |
source | De Gruyter journals |
title | Chain transitive sets for flows on flag bundles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chain%20transitive%20sets%20for%20flows%20on%20flag%20bundles&rft.jtitle=Forum%20mathematicum&rft.au=Barros,%20Carlos%20J.%20Braga&rft.date=2007-01-29&rft.volume=19&rft.issue=1&rft.spage=19&rft.epage=60&rft.pages=19-60&rft.issn=0933-7741&rft.eissn=1435-5337&rft_id=info:doi/10.1515/FORUM.2007.002&rft_dat=%3Cproquest_cross%3E743646339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1515652115&rft_id=info:pmid/&rfr_iscdi=true |