Chain transitive sets for flows on flag bundles

We study the chain transitive sets and Morse decompositions of flows on fiber bundles whose fibers are compact homogeneous spaces of Lie groups. The emphasis is put on generalized flag manifolds of semi-simple (and reductive) Lie groups. In this case an algebraic description of the chain transitive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum mathematicum 2007-01, Vol.19 (1), p.19-60
Hauptverfasser: Barros, Carlos J. Braga, Martin, Luiz A. B. San
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 19
container_title Forum mathematicum
container_volume 19
creator Barros, Carlos J. Braga
Martin, Luiz A. B. San
description We study the chain transitive sets and Morse decompositions of flows on fiber bundles whose fibers are compact homogeneous spaces of Lie groups. The emphasis is put on generalized flag manifolds of semi-simple (and reductive) Lie groups. In this case an algebraic description of the chain transitive sets is given. Our approach consists in shadowing the flow by semigroups of homeomorphisms to take advantage of the good properties of the semigroup actions on flag manifolds. The description of the chain components in the flag bundles generalizes a theorem of Selgrade for projective bundles with an independent proof.
doi_str_mv 10.1515/FORUM.2007.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743646339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743646339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-6c2ccbcb41060f2a9e0833c4cb77d426d876c69b0f63ccf6ed8b535df27be09b3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqWwMkdiYEpr-_zRjKiiFFRUqNrZsh0bUtKk2Akf_560RQxMd8Pzvnd6ELokeEA44cPJfLF6HFCM5QBjeoR6hAFPOYA8Rj2cAaRSMnKKzmJcY0w4BtxDw_GrLqqkCbqKRVN8uCS6Jia-Dokv68-Y1FW36JfEtFVeuniOTrwuo7v4nX20mtwux9N0Nr-7H9_MUtvda1JhqbXGGkawwJ7qzOERgGXWSJkzKvKRFFZkBnsB1nrh8pHhwHNPpXE4M9BH14febajfWxcbtSmidWWpK1e3UUkGggmArCOv_pHrug1V95zaaRGcEsI7anCgbKhjDM6rbSg2Onwrgvec2utTO32q09cF0kOgiI37-qN1eFNCguTqeckUfVoABTZVD_AD4KtwSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1515652115</pqid></control><display><type>article</type><title>Chain transitive sets for flows on flag bundles</title><source>De Gruyter journals</source><creator>Barros, Carlos J. Braga ; Martin, Luiz A. B. San</creator><creatorcontrib>Barros, Carlos J. Braga ; Martin, Luiz A. B. San</creatorcontrib><description>We study the chain transitive sets and Morse decompositions of flows on fiber bundles whose fibers are compact homogeneous spaces of Lie groups. The emphasis is put on generalized flag manifolds of semi-simple (and reductive) Lie groups. In this case an algebraic description of the chain transitive sets is given. Our approach consists in shadowing the flow by semigroups of homeomorphisms to take advantage of the good properties of the semigroup actions on flag manifolds. The description of the chain components in the flag bundles generalizes a theorem of Selgrade for projective bundles with an independent proof.</description><identifier>ISSN: 0933-7741</identifier><identifier>EISSN: 1435-5337</identifier><identifier>DOI: 10.1515/FORUM.2007.002</identifier><language>eng</language><publisher>Berlin: Walter de Gruyter</publisher><ispartof>Forum mathematicum, 2007-01, Vol.19 (1), p.19-60</ispartof><rights>Copyright Walter de Gruyter GmbH Jan 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-6c2ccbcb41060f2a9e0833c4cb77d426d876c69b0f63ccf6ed8b535df27be09b3</citedby><cites>FETCH-LOGICAL-c337t-6c2ccbcb41060f2a9e0833c4cb77d426d876c69b0f63ccf6ed8b535df27be09b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barros, Carlos J. Braga</creatorcontrib><creatorcontrib>Martin, Luiz A. B. San</creatorcontrib><title>Chain transitive sets for flows on flag bundles</title><title>Forum mathematicum</title><addtitle>Forum Mathematicum</addtitle><description>We study the chain transitive sets and Morse decompositions of flows on fiber bundles whose fibers are compact homogeneous spaces of Lie groups. The emphasis is put on generalized flag manifolds of semi-simple (and reductive) Lie groups. In this case an algebraic description of the chain transitive sets is given. Our approach consists in shadowing the flow by semigroups of homeomorphisms to take advantage of the good properties of the semigroup actions on flag manifolds. The description of the chain components in the flag bundles generalizes a theorem of Selgrade for projective bundles with an independent proof.</description><issn>0933-7741</issn><issn>1435-5337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EEqWwMkdiYEpr-_zRjKiiFFRUqNrZsh0bUtKk2Akf_560RQxMd8Pzvnd6ELokeEA44cPJfLF6HFCM5QBjeoR6hAFPOYA8Rj2cAaRSMnKKzmJcY0w4BtxDw_GrLqqkCbqKRVN8uCS6Jia-Dokv68-Y1FW36JfEtFVeuniOTrwuo7v4nX20mtwux9N0Nr-7H9_MUtvda1JhqbXGGkawwJ7qzOERgGXWSJkzKvKRFFZkBnsB1nrh8pHhwHNPpXE4M9BH14febajfWxcbtSmidWWpK1e3UUkGggmArCOv_pHrug1V95zaaRGcEsI7anCgbKhjDM6rbSg2Onwrgvec2utTO32q09cF0kOgiI37-qN1eFNCguTqeckUfVoABTZVD_AD4KtwSQ</recordid><startdate>20070129</startdate><enddate>20070129</enddate><creator>Barros, Carlos J. Braga</creator><creator>Martin, Luiz A. B. San</creator><general>Walter de Gruyter</general><general>Walter de Gruyter GmbH</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070129</creationdate><title>Chain transitive sets for flows on flag bundles</title><author>Barros, Carlos J. Braga ; Martin, Luiz A. B. San</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-6c2ccbcb41060f2a9e0833c4cb77d426d876c69b0f63ccf6ed8b535df27be09b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barros, Carlos J. Braga</creatorcontrib><creatorcontrib>Martin, Luiz A. B. San</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Forum mathematicum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barros, Carlos J. Braga</au><au>Martin, Luiz A. B. San</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chain transitive sets for flows on flag bundles</atitle><jtitle>Forum mathematicum</jtitle><addtitle>Forum Mathematicum</addtitle><date>2007-01-29</date><risdate>2007</risdate><volume>19</volume><issue>1</issue><spage>19</spage><epage>60</epage><pages>19-60</pages><issn>0933-7741</issn><eissn>1435-5337</eissn><abstract>We study the chain transitive sets and Morse decompositions of flows on fiber bundles whose fibers are compact homogeneous spaces of Lie groups. The emphasis is put on generalized flag manifolds of semi-simple (and reductive) Lie groups. In this case an algebraic description of the chain transitive sets is given. Our approach consists in shadowing the flow by semigroups of homeomorphisms to take advantage of the good properties of the semigroup actions on flag manifolds. The description of the chain components in the flag bundles generalizes a theorem of Selgrade for projective bundles with an independent proof.</abstract><cop>Berlin</cop><pub>Walter de Gruyter</pub><doi>10.1515/FORUM.2007.002</doi><tpages>42</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0933-7741
ispartof Forum mathematicum, 2007-01, Vol.19 (1), p.19-60
issn 0933-7741
1435-5337
language eng
recordid cdi_proquest_miscellaneous_743646339
source De Gruyter journals
title Chain transitive sets for flows on flag bundles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chain%20transitive%20sets%20for%20flows%20on%20flag%20bundles&rft.jtitle=Forum%20mathematicum&rft.au=Barros,%20Carlos%20J.%20Braga&rft.date=2007-01-29&rft.volume=19&rft.issue=1&rft.spage=19&rft.epage=60&rft.pages=19-60&rft.issn=0933-7741&rft.eissn=1435-5337&rft_id=info:doi/10.1515/FORUM.2007.002&rft_dat=%3Cproquest_cross%3E743646339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1515652115&rft_id=info:pmid/&rfr_iscdi=true