Chain transitive sets for flows on flag bundles

We study the chain transitive sets and Morse decompositions of flows on fiber bundles whose fibers are compact homogeneous spaces of Lie groups. The emphasis is put on generalized flag manifolds of semi-simple (and reductive) Lie groups. In this case an algebraic description of the chain transitive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum mathematicum 2007-01, Vol.19 (1), p.19-60
Hauptverfasser: Barros, Carlos J. Braga, Martin, Luiz A. B. San
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the chain transitive sets and Morse decompositions of flows on fiber bundles whose fibers are compact homogeneous spaces of Lie groups. The emphasis is put on generalized flag manifolds of semi-simple (and reductive) Lie groups. In this case an algebraic description of the chain transitive sets is given. Our approach consists in shadowing the flow by semigroups of homeomorphisms to take advantage of the good properties of the semigroup actions on flag manifolds. The description of the chain components in the flag bundles generalizes a theorem of Selgrade for projective bundles with an independent proof.
ISSN:0933-7741
1435-5337
DOI:10.1515/FORUM.2007.002