Evaluation of Artificial Neural Network Techniques for Municipal Water Consumption Modeling

Various Artificial Neural Network techniques such as Generalized Regression Neural Networks (GRNN), Feed Forward Neural Networks (FFNN) and Radial Basis Neural Networks (RBNN) have been evaluated based on their performance in forecasting monthly water consumptions from several socio-economic and cli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management 2009-03, Vol.23 (4), p.617-632
Hauptverfasser: Firat, Mahmut, Yurdusev, Mehmet Ali, Turan, Mustafa Erkan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Various Artificial Neural Network techniques such as Generalized Regression Neural Networks (GRNN), Feed Forward Neural Networks (FFNN) and Radial Basis Neural Networks (RBNN) have been evaluated based on their performance in forecasting monthly water consumptions from several socio-economic and climatic factors, which affect water use. The data set including total 108 data records is divided into two subsets, training and testing. The models consisting of the combination of the independent variables are constructed and the best fit input structure is investigated. The performance of ANN models in training and testing stages are compared with the observed water consumption values to identify the best fit forecasting model. For this purpose, some performance criteria such as Normalized Root Mean Square Error (NRMSE), efficiency (E) and correlation coefficient (CORR) are calculated for all models. The best fit models are also trained and tested by Multiple Linear Regression (MLR). The results indicated that GRNN outperforms all other methods in modeling monthly water consumptions.
ISSN:0920-4741
1573-1650
DOI:10.1007/s11269-008-9291-3