Stationary Bifurcations Control with Applications

Given a family of nonlinear control systems, where the Jacobian of the driver vector field at one equilibrium has a simple zero eigenvalue, with no other eigenvalues on the imaginary axis, we split it into two parts, one of them being a generic family, where it is possible to control the stationary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2010-03, Vol.109 (3), p.1077-1106
Hauptverfasser: Verduzco, Fernando, Frias-Armenta, Martin Eduardo, Leyva, Horacio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a family of nonlinear control systems, where the Jacobian of the driver vector field at one equilibrium has a simple zero eigenvalue, with no other eigenvalues on the imaginary axis, we split it into two parts, one of them being a generic family, where it is possible to control the stationary bifurcations: saddle-node, transcritical and pitchfork bifurcations, and the other one being a non-generic family, where it is possible to control the transcritical and pitchfork bifurcations. The polynomial control laws designed are given in terms of the original control system. The center manifold theory is used to simplify the analysis to dimension one. Finally, the results obtained are applied to two underactuated mechanical systems: the pendubot and the pendulum of Furuta.
ISSN:0167-8019
1572-9036
DOI:10.1007/s10440-008-9361-9