Pivoting in Linear Complementarity: Two Polynomial-Time Cases

We study the behavior of simple principal pivoting methods for the P-matrix linear complementarity problem (P-LCP). We solve an open problem of Morris by showing that Murty’s least-index pivot rule (under any fixed index order) leads to a quadratic number of iterations on Morris’s highly cyclic P-LC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2009-09, Vol.42 (2), p.187-205
Hauptverfasser: Foniok, Jan, Fukuda, Komei, Gärtner, Bernd, Lüthi, Hans-Jakob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the behavior of simple principal pivoting methods for the P-matrix linear complementarity problem (P-LCP). We solve an open problem of Morris by showing that Murty’s least-index pivot rule (under any fixed index order) leads to a quadratic number of iterations on Morris’s highly cyclic P-LCP examples. We then show that on K-matrix LCP instances, all pivot rules require only a linear number of iterations. As the main tool, we employ unique-sink orientations of cubes, a useful combinatorial abstraction of the P-LCP.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-009-9182-2