Pivoting in Linear Complementarity: Two Polynomial-Time Cases
We study the behavior of simple principal pivoting methods for the P-matrix linear complementarity problem (P-LCP). We solve an open problem of Morris by showing that Murty’s least-index pivot rule (under any fixed index order) leads to a quadratic number of iterations on Morris’s highly cyclic P-LC...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2009-09, Vol.42 (2), p.187-205 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the behavior of simple principal pivoting methods for the P-matrix linear complementarity problem (P-LCP). We solve an open problem of Morris by showing that Murty’s least-index pivot rule (under any fixed index order) leads to a quadratic number of iterations on Morris’s highly cyclic P-LCP examples. We then show that on K-matrix LCP instances,
all
pivot rules require only a linear number of iterations. As the main tool, we employ
unique-sink orientations
of cubes, a useful combinatorial abstraction of the P-LCP. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-009-9182-2 |