Maximal regularity for stochastic convolutions driven by Lévy processes

We generalize the maximal regularity result from Da Prato and Lunardi (Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei (9) Mat Appl 9(1):25–29, 1998) to stochastic convolutions driven by time homogenous Poisson random measures and cylindrical infinite dimensional Wiener processes.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2009-11, Vol.145 (3-4), p.615-637
Hauptverfasser: Brzeźniak, Zdzisław, Hausenblas, Erika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize the maximal regularity result from Da Prato and Lunardi (Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei (9) Mat Appl 9(1):25–29, 1998) to stochastic convolutions driven by time homogenous Poisson random measures and cylindrical infinite dimensional Wiener processes.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-008-0181-7