Image segmentation by polygonal Markov Fields

This paper advocates the use of multi-coloured polygonal Markov fields for model-based image segmentation. The formal construction of consistent multi-coloured polygonal Markov fields by Arak-Clifford-Surgailis and its dynamic representation are specialised and adapted to our context. We then formul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the Institute of Statistical Mathematics 2007-09, Vol.59 (3), p.465-486
Hauptverfasser: Kluszczynski, R, M N M van Lieshout, Schreiber, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper advocates the use of multi-coloured polygonal Markov fields for model-based image segmentation. The formal construction of consistent multi-coloured polygonal Markov fields by Arak-Clifford-Surgailis and its dynamic representation are specialised and adapted to our context. We then formulate image segmentation as a statistical estimation problem for a Gibbsian modification of an underlying polygonal Markov field, and discuss the choice of Hamiltonian. Monte Carlo techniques, including novel Gibbs updates for the Arak model, to estimate the model parameters and find an optimal partition of the image are developed. The approach is applied to image data, the first published application of polygonal Markov fields to segmentation problems in the mathematical literature. [PUBLICATION ABSTRACT]
ISSN:0020-3157
1572-9052
DOI:10.1007/s10463-006-0062-8