Disparate data fusion for protein phosphorylation prediction

New challenges in knowledge extraction include interpreting and classifying data sets while simultaneously considering related information to confirm results or identify false positives. We discuss a data fusion algorithmic framework targeted at this problem. It includes separate base classifiers fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2010-02, Vol.174 (1), p.219-235
Hauptverfasser: Gray, Genetha A., Williams, Pamela J., Brown, W. Michael, Faulon, Jean-Loup, Sale, Kenneth L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 1
container_start_page 219
container_title Annals of operations research
container_volume 174
creator Gray, Genetha A.
Williams, Pamela J.
Brown, W. Michael
Faulon, Jean-Loup
Sale, Kenneth L.
description New challenges in knowledge extraction include interpreting and classifying data sets while simultaneously considering related information to confirm results or identify false positives. We discuss a data fusion algorithmic framework targeted at this problem. It includes separate base classifiers for each data type and a fusion method for combining the individual classifiers. The fusion method is an extension of current ensemble classification techniques and has the advantage of allowing data to remain in heterogeneous databases. In this paper, we focus on the applicability of such a framework to the protein phosphorylation prediction problem.
doi_str_mv 10.1007/s10479-008-0347-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_743588290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A329182357</galeid><sourcerecordid>A329182357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-f0feb30a546cd84619a0a40111aed381889dfa20c855ab6b49b6bf4673d845163</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS0EEpeWB2AXwYINacd_iS2xqQoFpEps2rU1N7FvXeXGwZMs-vZ1FCRaBLI8tuzvjI59GHvH4YwDtOfEQbW2BjA1SNXW9gXbcd2K2kppXrIdCK1qLSW8Zm-I7gGAc6N37POXSBNmnH3V44xVWCimsQopV1NOs49jNd0lKjM_DDivd1P2fezW7Sl7FXAg__b3esJur77eXH6vr39--3F5cV13yoi5DhD8XgJq1XS9UQ23CKiKAY6-l4YbY_uAAjqjNe6bvbKlBNW0stCaN_KEfdz6Fku_Fk-zO0bq_DDg6NNCrlVSGyMsFPL9X-R9WvJYzDnBlQZuGlmgDxt0wMG7OIY0Z-zWlu5CCsuNkLot1Nk_qDJ6f4xdGn2I5fyZ4NMTwb585OipFIqHu5kOuBA9x_mGdzkRZR_clOMR84Pj4NZM3ZapK5m6NVNni0ZsGirsePD5z_P-L3oEpo6hiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214501863</pqid></control><display><type>article</type><title>Disparate data fusion for protein phosphorylation prediction</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gray, Genetha A. ; Williams, Pamela J. ; Brown, W. Michael ; Faulon, Jean-Loup ; Sale, Kenneth L.</creator><creatorcontrib>Gray, Genetha A. ; Williams, Pamela J. ; Brown, W. Michael ; Faulon, Jean-Loup ; Sale, Kenneth L.</creatorcontrib><description>New challenges in knowledge extraction include interpreting and classifying data sets while simultaneously considering related information to confirm results or identify false positives. We discuss a data fusion algorithmic framework targeted at this problem. It includes separate base classifiers for each data type and a fusion method for combining the individual classifiers. The fusion method is an extension of current ensemble classification techniques and has the advantage of allowing data to remain in heterogeneous databases. In this paper, we focus on the applicability of such a framework to the protein phosphorylation prediction problem.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-008-0347-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Amino acids ; Business and Management ; Cell division ; Classification ; Combinatorics ; Data collection ; Data mining ; Datasets ; Enzymes ; Gene expression ; Hypotheses ; Investigations ; Kinases ; Laboratories ; Methods ; Operations research ; Operations Research/Decision Theory ; Phosphorylation ; Proteins ; Proteomics ; Signal transduction ; Studies ; Theory of Computation</subject><ispartof>Annals of operations research, 2010-02, Vol.174 (1), p.219-235</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>COPYRIGHT 2010 Springer</rights><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-f0feb30a546cd84619a0a40111aed381889dfa20c855ab6b49b6bf4673d845163</citedby><cites>FETCH-LOGICAL-c482t-f0feb30a546cd84619a0a40111aed381889dfa20c855ab6b49b6bf4673d845163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-008-0347-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-008-0347-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Gray, Genetha A.</creatorcontrib><creatorcontrib>Williams, Pamela J.</creatorcontrib><creatorcontrib>Brown, W. Michael</creatorcontrib><creatorcontrib>Faulon, Jean-Loup</creatorcontrib><creatorcontrib>Sale, Kenneth L.</creatorcontrib><title>Disparate data fusion for protein phosphorylation prediction</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>New challenges in knowledge extraction include interpreting and classifying data sets while simultaneously considering related information to confirm results or identify false positives. We discuss a data fusion algorithmic framework targeted at this problem. It includes separate base classifiers for each data type and a fusion method for combining the individual classifiers. The fusion method is an extension of current ensemble classification techniques and has the advantage of allowing data to remain in heterogeneous databases. In this paper, we focus on the applicability of such a framework to the protein phosphorylation prediction problem.</description><subject>Algorithms</subject><subject>Amino acids</subject><subject>Business and Management</subject><subject>Cell division</subject><subject>Classification</subject><subject>Combinatorics</subject><subject>Data collection</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Hypotheses</subject><subject>Investigations</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Methods</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Signal transduction</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1u1TAQhS0EEpeWB2AXwYINacd_iS2xqQoFpEps2rU1N7FvXeXGwZMs-vZ1FCRaBLI8tuzvjI59GHvH4YwDtOfEQbW2BjA1SNXW9gXbcd2K2kppXrIdCK1qLSW8Zm-I7gGAc6N37POXSBNmnH3V44xVWCimsQopV1NOs49jNd0lKjM_DDivd1P2fezW7Sl7FXAg__b3esJur77eXH6vr39--3F5cV13yoi5DhD8XgJq1XS9UQ23CKiKAY6-l4YbY_uAAjqjNe6bvbKlBNW0stCaN_KEfdz6Fku_Fk-zO0bq_DDg6NNCrlVSGyMsFPL9X-R9WvJYzDnBlQZuGlmgDxt0wMG7OIY0Z-zWlu5CCsuNkLot1Nk_qDJ6f4xdGn2I5fyZ4NMTwb585OipFIqHu5kOuBA9x_mGdzkRZR_clOMR84Pj4NZM3ZapK5m6NVNni0ZsGirsePD5z_P-L3oEpo6hiw</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Gray, Genetha A.</creator><creator>Williams, Pamela J.</creator><creator>Brown, W. Michael</creator><creator>Faulon, Jean-Loup</creator><creator>Sale, Kenneth L.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100201</creationdate><title>Disparate data fusion for protein phosphorylation prediction</title><author>Gray, Genetha A. ; Williams, Pamela J. ; Brown, W. Michael ; Faulon, Jean-Loup ; Sale, Kenneth L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-f0feb30a546cd84619a0a40111aed381889dfa20c855ab6b49b6bf4673d845163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Amino acids</topic><topic>Business and Management</topic><topic>Cell division</topic><topic>Classification</topic><topic>Combinatorics</topic><topic>Data collection</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Hypotheses</topic><topic>Investigations</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Methods</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Signal transduction</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gray, Genetha A.</creatorcontrib><creatorcontrib>Williams, Pamela J.</creatorcontrib><creatorcontrib>Brown, W. Michael</creatorcontrib><creatorcontrib>Faulon, Jean-Loup</creatorcontrib><creatorcontrib>Sale, Kenneth L.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gray, Genetha A.</au><au>Williams, Pamela J.</au><au>Brown, W. Michael</au><au>Faulon, Jean-Loup</au><au>Sale, Kenneth L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disparate data fusion for protein phosphorylation prediction</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>174</volume><issue>1</issue><spage>219</spage><epage>235</epage><pages>219-235</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>New challenges in knowledge extraction include interpreting and classifying data sets while simultaneously considering related information to confirm results or identify false positives. We discuss a data fusion algorithmic framework targeted at this problem. It includes separate base classifiers for each data type and a fusion method for combining the individual classifiers. The fusion method is an extension of current ensemble classification techniques and has the advantage of allowing data to remain in heterogeneous databases. In this paper, we focus on the applicability of such a framework to the protein phosphorylation prediction problem.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10479-008-0347-9</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2010-02, Vol.174 (1), p.219-235
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_miscellaneous_743588290
source EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Amino acids
Business and Management
Cell division
Classification
Combinatorics
Data collection
Data mining
Datasets
Enzymes
Gene expression
Hypotheses
Investigations
Kinases
Laboratories
Methods
Operations research
Operations Research/Decision Theory
Phosphorylation
Proteins
Proteomics
Signal transduction
Studies
Theory of Computation
title Disparate data fusion for protein phosphorylation prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disparate%20data%20fusion%20for%20protein%20phosphorylation%20prediction&rft.jtitle=Annals%20of%20operations%20research&rft.au=Gray,%20Genetha%20A.&rft.date=2010-02-01&rft.volume=174&rft.issue=1&rft.spage=219&rft.epage=235&rft.pages=219-235&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-008-0347-9&rft_dat=%3Cgale_proqu%3EA329182357%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214501863&rft_id=info:pmid/&rft_galeid=A329182357&rfr_iscdi=true