Disparate data fusion for protein phosphorylation prediction
New challenges in knowledge extraction include interpreting and classifying data sets while simultaneously considering related information to confirm results or identify false positives. We discuss a data fusion algorithmic framework targeted at this problem. It includes separate base classifiers fo...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2010-02, Vol.174 (1), p.219-235 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | New challenges in knowledge extraction include interpreting and classifying data sets while simultaneously considering related information to confirm results or identify false positives. We discuss a data fusion algorithmic framework targeted at this problem. It includes separate base classifiers for each data type and a fusion method for combining the individual classifiers. The fusion method is an extension of current ensemble classification techniques and has the advantage of allowing data to remain in heterogeneous databases. In this paper, we focus on the applicability of such a framework to the protein phosphorylation prediction problem. |
---|---|
ISSN: | 0254-5330 1572-9338 |
DOI: | 10.1007/s10479-008-0347-9 |