Disparate data fusion for protein phosphorylation prediction

New challenges in knowledge extraction include interpreting and classifying data sets while simultaneously considering related information to confirm results or identify false positives. We discuss a data fusion algorithmic framework targeted at this problem. It includes separate base classifiers fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2010-02, Vol.174 (1), p.219-235
Hauptverfasser: Gray, Genetha A., Williams, Pamela J., Brown, W. Michael, Faulon, Jean-Loup, Sale, Kenneth L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New challenges in knowledge extraction include interpreting and classifying data sets while simultaneously considering related information to confirm results or identify false positives. We discuss a data fusion algorithmic framework targeted at this problem. It includes separate base classifiers for each data type and a fusion method for combining the individual classifiers. The fusion method is an extension of current ensemble classification techniques and has the advantage of allowing data to remain in heterogeneous databases. In this paper, we focus on the applicability of such a framework to the protein phosphorylation prediction problem.
ISSN:0254-5330
1572-9338
DOI:10.1007/s10479-008-0347-9