Diagrams, Tensors and Geometric Reasoning

Geometry and in particular projective geometry (and its corresponding invariant theory) deals a lot with structural properties of geometric objects and their interrelations. This papers describes how concepts of tensor calculus can be used to express geometric invariants and how, in particular, diag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2009-09, Vol.42 (2), p.305-334
Hauptverfasser: Richter-Gebert, Jürgen, Lebmeir, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 2
container_start_page 305
container_title Discrete & computational geometry
container_volume 42
creator Richter-Gebert, Jürgen
Lebmeir, Peter
description Geometry and in particular projective geometry (and its corresponding invariant theory) deals a lot with structural properties of geometric objects and their interrelations. This papers describes how concepts of tensor calculus can be used to express geometric invariants and how, in particular, diagrammatic notation can be used to deal with invariants in a highly intuitive way. In particular we explain how geometries like euclidean or spherical geometry can be dealt with in this framework.
doi_str_mv 10.1007/s00454-009-9188-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743585613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743585613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-1d1c0a5abbd38e64730485ecada4204b9311d9fbe2b135d67549e303df8707893</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsf4G5wI4LR9ybJJFlK1SoUBKnrkJlkypTOpCbtwr83ZVyI4Optzr3vcgi5RLhDAHmfALjgFEBTjUpRfUQmyFlJgXN-TCaAUlPBZHVKzlJaQ8Y1qAm5eezsKto-3RZLP6QQU2EHV8x96P0udk3x7m0KQzeszslJazfJX_zcKfl4flrOXujibf46e1jQhmnYUXTYgBW2rh1TvuKSAVfCN9ZZXgKvNUN0uq19WSMTrpKCa8-AuVZJkEqzKbkee7cxfO592pm-S43fbOzgwz4ZyZlQokKWyas_5Drs45DHGdRVfgyCZwhHqIkhpehbs41db-OXQTAHdWZUZ7I6c1BnDhPKMZMyO6x8_FX8b-gbYcxuqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196730054</pqid></control><display><type>article</type><title>Diagrams, Tensors and Geometric Reasoning</title><source>SpringerLink Journals</source><creator>Richter-Gebert, Jürgen ; Lebmeir, Peter</creator><creatorcontrib>Richter-Gebert, Jürgen ; Lebmeir, Peter</creatorcontrib><description>Geometry and in particular projective geometry (and its corresponding invariant theory) deals a lot with structural properties of geometric objects and their interrelations. This papers describes how concepts of tensor calculus can be used to express geometric invariants and how, in particular, diagrammatic notation can be used to deal with invariants in a highly intuitive way. In particular we explain how geometries like euclidean or spherical geometry can be dealt with in this framework.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-009-9188-9</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Combinatorics ; Computational Mathematics and Numerical Analysis ; Geometry ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Discrete &amp; computational geometry, 2009-09, Vol.42 (2), p.305-334</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-1d1c0a5abbd38e64730485ecada4204b9311d9fbe2b135d67549e303df8707893</citedby><cites>FETCH-LOGICAL-c390t-1d1c0a5abbd38e64730485ecada4204b9311d9fbe2b135d67549e303df8707893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-009-9188-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-009-9188-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Richter-Gebert, Jürgen</creatorcontrib><creatorcontrib>Lebmeir, Peter</creatorcontrib><title>Diagrams, Tensors and Geometric Reasoning</title><title>Discrete &amp; computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>Geometry and in particular projective geometry (and its corresponding invariant theory) deals a lot with structural properties of geometric objects and their interrelations. This papers describes how concepts of tensor calculus can be used to express geometric invariants and how, in particular, diagrammatic notation can be used to deal with invariants in a highly intuitive way. In particular we explain how geometries like euclidean or spherical geometry can be dealt with in this framework.</description><subject>Combinatorics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMFKAzEURYMoWKsf4G5wI4LR9ybJJFlK1SoUBKnrkJlkypTOpCbtwr83ZVyI4Optzr3vcgi5RLhDAHmfALjgFEBTjUpRfUQmyFlJgXN-TCaAUlPBZHVKzlJaQ8Y1qAm5eezsKto-3RZLP6QQU2EHV8x96P0udk3x7m0KQzeszslJazfJX_zcKfl4flrOXujibf46e1jQhmnYUXTYgBW2rh1TvuKSAVfCN9ZZXgKvNUN0uq19WSMTrpKCa8-AuVZJkEqzKbkee7cxfO592pm-S43fbOzgwz4ZyZlQokKWyas_5Drs45DHGdRVfgyCZwhHqIkhpehbs41db-OXQTAHdWZUZ7I6c1BnDhPKMZMyO6x8_FX8b-gbYcxuqg</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Richter-Gebert, Jürgen</creator><creator>Lebmeir, Peter</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090901</creationdate><title>Diagrams, Tensors and Geometric Reasoning</title><author>Richter-Gebert, Jürgen ; Lebmeir, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-1d1c0a5abbd38e64730485ecada4204b9311d9fbe2b135d67549e303df8707893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Combinatorics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter-Gebert, Jürgen</creatorcontrib><creatorcontrib>Lebmeir, Peter</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter-Gebert, Jürgen</au><au>Lebmeir, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagrams, Tensors and Geometric Reasoning</atitle><jtitle>Discrete &amp; computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>42</volume><issue>2</issue><spage>305</spage><epage>334</epage><pages>305-334</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>Geometry and in particular projective geometry (and its corresponding invariant theory) deals a lot with structural properties of geometric objects and their interrelations. This papers describes how concepts of tensor calculus can be used to express geometric invariants and how, in particular, diagrammatic notation can be used to deal with invariants in a highly intuitive way. In particular we explain how geometries like euclidean or spherical geometry can be dealt with in this framework.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00454-009-9188-9</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2009-09, Vol.42 (2), p.305-334
issn 0179-5376
1432-0444
language eng
recordid cdi_proquest_miscellaneous_743585613
source SpringerLink Journals
subjects Combinatorics
Computational Mathematics and Numerical Analysis
Geometry
Mathematics
Mathematics and Statistics
Theorems
title Diagrams, Tensors and Geometric Reasoning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T23%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagrams,%20Tensors%20and%20Geometric%20Reasoning&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Richter-Gebert,%20J%C3%BCrgen&rft.date=2009-09-01&rft.volume=42&rft.issue=2&rft.spage=305&rft.epage=334&rft.pages=305-334&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-009-9188-9&rft_dat=%3Cproquest_cross%3E743585613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196730054&rft_id=info:pmid/&rfr_iscdi=true