Diagrams, Tensors and Geometric Reasoning
Geometry and in particular projective geometry (and its corresponding invariant theory) deals a lot with structural properties of geometric objects and their interrelations. This papers describes how concepts of tensor calculus can be used to express geometric invariants and how, in particular, diag...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2009-09, Vol.42 (2), p.305-334 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | 2 |
container_start_page | 305 |
container_title | Discrete & computational geometry |
container_volume | 42 |
creator | Richter-Gebert, Jürgen Lebmeir, Peter |
description | Geometry and in particular projective geometry (and its corresponding invariant theory) deals a lot with
structural properties
of geometric objects and their interrelations. This papers describes how concepts of tensor calculus can be used to express geometric invariants and how, in particular, diagrammatic notation can be used to deal with invariants in a highly intuitive way. In particular we explain how geometries like euclidean or spherical geometry can be dealt with in this framework. |
doi_str_mv | 10.1007/s00454-009-9188-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743585613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743585613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-1d1c0a5abbd38e64730485ecada4204b9311d9fbe2b135d67549e303df8707893</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsf4G5wI4LR9ybJJFlK1SoUBKnrkJlkypTOpCbtwr83ZVyI4Optzr3vcgi5RLhDAHmfALjgFEBTjUpRfUQmyFlJgXN-TCaAUlPBZHVKzlJaQ8Y1qAm5eezsKto-3RZLP6QQU2EHV8x96P0udk3x7m0KQzeszslJazfJX_zcKfl4flrOXujibf46e1jQhmnYUXTYgBW2rh1TvuKSAVfCN9ZZXgKvNUN0uq19WSMTrpKCa8-AuVZJkEqzKbkee7cxfO592pm-S43fbOzgwz4ZyZlQokKWyas_5Drs45DHGdRVfgyCZwhHqIkhpehbs41db-OXQTAHdWZUZ7I6c1BnDhPKMZMyO6x8_FX8b-gbYcxuqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196730054</pqid></control><display><type>article</type><title>Diagrams, Tensors and Geometric Reasoning</title><source>SpringerLink Journals</source><creator>Richter-Gebert, Jürgen ; Lebmeir, Peter</creator><creatorcontrib>Richter-Gebert, Jürgen ; Lebmeir, Peter</creatorcontrib><description>Geometry and in particular projective geometry (and its corresponding invariant theory) deals a lot with
structural properties
of geometric objects and their interrelations. This papers describes how concepts of tensor calculus can be used to express geometric invariants and how, in particular, diagrammatic notation can be used to deal with invariants in a highly intuitive way. In particular we explain how geometries like euclidean or spherical geometry can be dealt with in this framework.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-009-9188-9</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Combinatorics ; Computational Mathematics and Numerical Analysis ; Geometry ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Discrete & computational geometry, 2009-09, Vol.42 (2), p.305-334</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-1d1c0a5abbd38e64730485ecada4204b9311d9fbe2b135d67549e303df8707893</citedby><cites>FETCH-LOGICAL-c390t-1d1c0a5abbd38e64730485ecada4204b9311d9fbe2b135d67549e303df8707893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-009-9188-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-009-9188-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Richter-Gebert, Jürgen</creatorcontrib><creatorcontrib>Lebmeir, Peter</creatorcontrib><title>Diagrams, Tensors and Geometric Reasoning</title><title>Discrete & computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>Geometry and in particular projective geometry (and its corresponding invariant theory) deals a lot with
structural properties
of geometric objects and their interrelations. This papers describes how concepts of tensor calculus can be used to express geometric invariants and how, in particular, diagrammatic notation can be used to deal with invariants in a highly intuitive way. In particular we explain how geometries like euclidean or spherical geometry can be dealt with in this framework.</description><subject>Combinatorics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMFKAzEURYMoWKsf4G5wI4LR9ybJJFlK1SoUBKnrkJlkypTOpCbtwr83ZVyI4Optzr3vcgi5RLhDAHmfALjgFEBTjUpRfUQmyFlJgXN-TCaAUlPBZHVKzlJaQ8Y1qAm5eezsKto-3RZLP6QQU2EHV8x96P0udk3x7m0KQzeszslJazfJX_zcKfl4flrOXujibf46e1jQhmnYUXTYgBW2rh1TvuKSAVfCN9ZZXgKvNUN0uq19WSMTrpKCa8-AuVZJkEqzKbkee7cxfO592pm-S43fbOzgwz4ZyZlQokKWyas_5Drs45DHGdRVfgyCZwhHqIkhpehbs41db-OXQTAHdWZUZ7I6c1BnDhPKMZMyO6x8_FX8b-gbYcxuqg</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Richter-Gebert, Jürgen</creator><creator>Lebmeir, Peter</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090901</creationdate><title>Diagrams, Tensors and Geometric Reasoning</title><author>Richter-Gebert, Jürgen ; Lebmeir, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-1d1c0a5abbd38e64730485ecada4204b9311d9fbe2b135d67549e303df8707893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Combinatorics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter-Gebert, Jürgen</creatorcontrib><creatorcontrib>Lebmeir, Peter</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete & computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter-Gebert, Jürgen</au><au>Lebmeir, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagrams, Tensors and Geometric Reasoning</atitle><jtitle>Discrete & computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2009-09-01</date><risdate>2009</risdate><volume>42</volume><issue>2</issue><spage>305</spage><epage>334</epage><pages>305-334</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>Geometry and in particular projective geometry (and its corresponding invariant theory) deals a lot with
structural properties
of geometric objects and their interrelations. This papers describes how concepts of tensor calculus can be used to express geometric invariants and how, in particular, diagrammatic notation can be used to deal with invariants in a highly intuitive way. In particular we explain how geometries like euclidean or spherical geometry can be dealt with in this framework.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00454-009-9188-9</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0179-5376 |
ispartof | Discrete & computational geometry, 2009-09, Vol.42 (2), p.305-334 |
issn | 0179-5376 1432-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_743585613 |
source | SpringerLink Journals |
subjects | Combinatorics Computational Mathematics and Numerical Analysis Geometry Mathematics Mathematics and Statistics Theorems |
title | Diagrams, Tensors and Geometric Reasoning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T23%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagrams,%20Tensors%20and%20Geometric%20Reasoning&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Richter-Gebert,%20J%C3%BCrgen&rft.date=2009-09-01&rft.volume=42&rft.issue=2&rft.spage=305&rft.epage=334&rft.pages=305-334&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-009-9188-9&rft_dat=%3Cproquest_cross%3E743585613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196730054&rft_id=info:pmid/&rfr_iscdi=true |