Diagrams, Tensors and Geometric Reasoning
Geometry and in particular projective geometry (and its corresponding invariant theory) deals a lot with structural properties of geometric objects and their interrelations. This papers describes how concepts of tensor calculus can be used to express geometric invariants and how, in particular, diag...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2009-09, Vol.42 (2), p.305-334 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Geometry and in particular projective geometry (and its corresponding invariant theory) deals a lot with
structural properties
of geometric objects and their interrelations. This papers describes how concepts of tensor calculus can be used to express geometric invariants and how, in particular, diagrammatic notation can be used to deal with invariants in a highly intuitive way. In particular we explain how geometries like euclidean or spherical geometry can be dealt with in this framework. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-009-9188-9 |