Diagrams, Tensors and Geometric Reasoning

Geometry and in particular projective geometry (and its corresponding invariant theory) deals a lot with structural properties of geometric objects and their interrelations. This papers describes how concepts of tensor calculus can be used to express geometric invariants and how, in particular, diag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2009-09, Vol.42 (2), p.305-334
Hauptverfasser: Richter-Gebert, Jürgen, Lebmeir, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Geometry and in particular projective geometry (and its corresponding invariant theory) deals a lot with structural properties of geometric objects and their interrelations. This papers describes how concepts of tensor calculus can be used to express geometric invariants and how, in particular, diagrammatic notation can be used to deal with invariants in a highly intuitive way. In particular we explain how geometries like euclidean or spherical geometry can be dealt with in this framework.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-009-9188-9