Conformal and semi-conformal biharmonic maps
We show that a conformal mapping between Riemannian manifolds of the same dimension n ≥ 3 is biharmonic if and only if the gradient of its dilation satisfies a certain second-order elliptic partial differential equation. On an Einstein manifold solutions can be generated from isoparametric function...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2008-11, Vol.34 (4), p.403-414 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | 4 |
container_start_page | 403 |
container_title | Annals of global analysis and geometry |
container_volume | 34 |
creator | Baird, Paul Fardoun, Ali Ouakkas, Seddik |
description | We show that a conformal mapping between Riemannian manifolds of the same dimension
n
≥ 3 is biharmonic if and only if the gradient of its dilation satisfies a certain second-order elliptic partial differential equation. On an Einstein manifold solutions can be generated from isoparametric functions. We characterise those semi-conformal submersions that are biharmonic in terms of their dilation and the fibre mean curvature vector field. |
doi_str_mv | 10.1007/s10455-008-9118-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743584075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743584075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-1400c0675172066b96814db3d5bfb882508a0e3c2d6af2b844c32bd9df5845183</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHeDGzdG38tHky6lOCoMuFFwF5I01Q5tMyYzC_-9HSoKgqsHj3Mvl0PIOcI1AqibjCCkpACaloia6gMyQ6kYLaGAQzIDxhlVIF6PyUnOawCQHHFGrqo4NDH1tlvYoV7k0LfU_7xc-25TH4fWL3q7yafkqLFdDmffd05elnfP1QNdPd0_Vrcr6rlQW4oCwEOhJCoGReHKQqOoHa-la5zWTIK2ELhndWEb5rQQnjNXl3UjtZCo-ZxcTr2bFD92IW9N32Yfus4OIe6yUYKPJCg5khd_yHXcpWEcZxgKrpjWfIRwgnyKOafQmE1qe5s-DYLZ2zOTPTPaM3t7Zj-BTZk8ssNbSL_F_4e-AOrmb6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214372883</pqid></control><display><type>article</type><title>Conformal and semi-conformal biharmonic maps</title><source>SpringerLink Journals - AutoHoldings</source><creator>Baird, Paul ; Fardoun, Ali ; Ouakkas, Seddik</creator><creatorcontrib>Baird, Paul ; Fardoun, Ali ; Ouakkas, Seddik</creatorcontrib><description>We show that a conformal mapping between Riemannian manifolds of the same dimension
n
≥ 3 is biharmonic if and only if the gradient of its dilation satisfies a certain second-order elliptic partial differential equation. On an Einstein manifold solutions can be generated from isoparametric functions. We characterise those semi-conformal submersions that are biharmonic in terms of their dilation and the fibre mean curvature vector field.</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-008-9118-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Differential Geometry ; Euclidean space ; Geometry ; Global Analysis and Analysis on Manifolds ; Harmonic analysis ; Mapping ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Original Paper ; Partial differential equations ; Studies</subject><ispartof>Annals of global analysis and geometry, 2008-11, Vol.34 (4), p.403-414</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-1400c0675172066b96814db3d5bfb882508a0e3c2d6af2b844c32bd9df5845183</citedby><cites>FETCH-LOGICAL-c347t-1400c0675172066b96814db3d5bfb882508a0e3c2d6af2b844c32bd9df5845183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10455-008-9118-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10455-008-9118-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Baird, Paul</creatorcontrib><creatorcontrib>Fardoun, Ali</creatorcontrib><creatorcontrib>Ouakkas, Seddik</creatorcontrib><title>Conformal and semi-conformal biharmonic maps</title><title>Annals of global analysis and geometry</title><addtitle>Ann Glob Anal Geom</addtitle><description>We show that a conformal mapping between Riemannian manifolds of the same dimension
n
≥ 3 is biharmonic if and only if the gradient of its dilation satisfies a certain second-order elliptic partial differential equation. On an Einstein manifold solutions can be generated from isoparametric functions. We characterise those semi-conformal submersions that are biharmonic in terms of their dilation and the fibre mean curvature vector field.</description><subject>Analysis</subject><subject>Differential Geometry</subject><subject>Euclidean space</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Harmonic analysis</subject><subject>Mapping</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Studies</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAURYMoOI7-AHeDGzdG38tHky6lOCoMuFFwF5I01Q5tMyYzC_-9HSoKgqsHj3Mvl0PIOcI1AqibjCCkpACaloia6gMyQ6kYLaGAQzIDxhlVIF6PyUnOawCQHHFGrqo4NDH1tlvYoV7k0LfU_7xc-25TH4fWL3q7yafkqLFdDmffd05elnfP1QNdPd0_Vrcr6rlQW4oCwEOhJCoGReHKQqOoHa-la5zWTIK2ELhndWEb5rQQnjNXl3UjtZCo-ZxcTr2bFD92IW9N32Yfus4OIe6yUYKPJCg5khd_yHXcpWEcZxgKrpjWfIRwgnyKOafQmE1qe5s-DYLZ2zOTPTPaM3t7Zj-BTZk8ssNbSL_F_4e-AOrmb6M</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Baird, Paul</creator><creator>Fardoun, Ali</creator><creator>Ouakkas, Seddik</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20081101</creationdate><title>Conformal and semi-conformal biharmonic maps</title><author>Baird, Paul ; Fardoun, Ali ; Ouakkas, Seddik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-1400c0675172066b96814db3d5bfb882508a0e3c2d6af2b844c32bd9df5845183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analysis</topic><topic>Differential Geometry</topic><topic>Euclidean space</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Harmonic analysis</topic><topic>Mapping</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baird, Paul</creatorcontrib><creatorcontrib>Fardoun, Ali</creatorcontrib><creatorcontrib>Ouakkas, Seddik</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baird, Paul</au><au>Fardoun, Ali</au><au>Ouakkas, Seddik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformal and semi-conformal biharmonic maps</atitle><jtitle>Annals of global analysis and geometry</jtitle><stitle>Ann Glob Anal Geom</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>34</volume><issue>4</issue><spage>403</spage><epage>414</epage><pages>403-414</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>We show that a conformal mapping between Riemannian manifolds of the same dimension
n
≥ 3 is biharmonic if and only if the gradient of its dilation satisfies a certain second-order elliptic partial differential equation. On an Einstein manifold solutions can be generated from isoparametric functions. We characterise those semi-conformal submersions that are biharmonic in terms of their dilation and the fibre mean curvature vector field.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10455-008-9118-8</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0232-704X |
ispartof | Annals of global analysis and geometry, 2008-11, Vol.34 (4), p.403-414 |
issn | 0232-704X 1572-9060 |
language | eng |
recordid | cdi_proquest_miscellaneous_743584075 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Differential Geometry Euclidean space Geometry Global Analysis and Analysis on Manifolds Harmonic analysis Mapping Mathematical Physics Mathematics Mathematics and Statistics Original Paper Partial differential equations Studies |
title | Conformal and semi-conformal biharmonic maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformal%20and%20semi-conformal%20biharmonic%20maps&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=Baird,%20Paul&rft.date=2008-11-01&rft.volume=34&rft.issue=4&rft.spage=403&rft.epage=414&rft.pages=403-414&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-008-9118-8&rft_dat=%3Cproquest_cross%3E743584075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214372883&rft_id=info:pmid/&rfr_iscdi=true |