Conformal and semi-conformal biharmonic maps

We show that a conformal mapping between Riemannian manifolds of the same dimension n  ≥ 3 is biharmonic if and only if the gradient of its dilation satisfies a certain second-order elliptic partial differential equation. On an Einstein manifold solutions can be generated from isoparametric function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2008-11, Vol.34 (4), p.403-414
Hauptverfasser: Baird, Paul, Fardoun, Ali, Ouakkas, Seddik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue 4
container_start_page 403
container_title Annals of global analysis and geometry
container_volume 34
creator Baird, Paul
Fardoun, Ali
Ouakkas, Seddik
description We show that a conformal mapping between Riemannian manifolds of the same dimension n  ≥ 3 is biharmonic if and only if the gradient of its dilation satisfies a certain second-order elliptic partial differential equation. On an Einstein manifold solutions can be generated from isoparametric functions. We characterise those semi-conformal submersions that are biharmonic in terms of their dilation and the fibre mean curvature vector field.
doi_str_mv 10.1007/s10455-008-9118-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_743584075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743584075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-1400c0675172066b96814db3d5bfb882508a0e3c2d6af2b844c32bd9df5845183</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHeDGzdG38tHky6lOCoMuFFwF5I01Q5tMyYzC_-9HSoKgqsHj3Mvl0PIOcI1AqibjCCkpACaloia6gMyQ6kYLaGAQzIDxhlVIF6PyUnOawCQHHFGrqo4NDH1tlvYoV7k0LfU_7xc-25TH4fWL3q7yafkqLFdDmffd05elnfP1QNdPd0_Vrcr6rlQW4oCwEOhJCoGReHKQqOoHa-la5zWTIK2ELhndWEb5rQQnjNXl3UjtZCo-ZxcTr2bFD92IW9N32Yfus4OIe6yUYKPJCg5khd_yHXcpWEcZxgKrpjWfIRwgnyKOafQmE1qe5s-DYLZ2zOTPTPaM3t7Zj-BTZk8ssNbSL_F_4e-AOrmb6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214372883</pqid></control><display><type>article</type><title>Conformal and semi-conformal biharmonic maps</title><source>SpringerLink Journals - AutoHoldings</source><creator>Baird, Paul ; Fardoun, Ali ; Ouakkas, Seddik</creator><creatorcontrib>Baird, Paul ; Fardoun, Ali ; Ouakkas, Seddik</creatorcontrib><description>We show that a conformal mapping between Riemannian manifolds of the same dimension n  ≥ 3 is biharmonic if and only if the gradient of its dilation satisfies a certain second-order elliptic partial differential equation. On an Einstein manifold solutions can be generated from isoparametric functions. We characterise those semi-conformal submersions that are biharmonic in terms of their dilation and the fibre mean curvature vector field.</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-008-9118-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Differential Geometry ; Euclidean space ; Geometry ; Global Analysis and Analysis on Manifolds ; Harmonic analysis ; Mapping ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Original Paper ; Partial differential equations ; Studies</subject><ispartof>Annals of global analysis and geometry, 2008-11, Vol.34 (4), p.403-414</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-1400c0675172066b96814db3d5bfb882508a0e3c2d6af2b844c32bd9df5845183</citedby><cites>FETCH-LOGICAL-c347t-1400c0675172066b96814db3d5bfb882508a0e3c2d6af2b844c32bd9df5845183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10455-008-9118-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10455-008-9118-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Baird, Paul</creatorcontrib><creatorcontrib>Fardoun, Ali</creatorcontrib><creatorcontrib>Ouakkas, Seddik</creatorcontrib><title>Conformal and semi-conformal biharmonic maps</title><title>Annals of global analysis and geometry</title><addtitle>Ann Glob Anal Geom</addtitle><description>We show that a conformal mapping between Riemannian manifolds of the same dimension n  ≥ 3 is biharmonic if and only if the gradient of its dilation satisfies a certain second-order elliptic partial differential equation. On an Einstein manifold solutions can be generated from isoparametric functions. We characterise those semi-conformal submersions that are biharmonic in terms of their dilation and the fibre mean curvature vector field.</description><subject>Analysis</subject><subject>Differential Geometry</subject><subject>Euclidean space</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Harmonic analysis</subject><subject>Mapping</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Studies</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LxDAURYMoOI7-AHeDGzdG38tHky6lOCoMuFFwF5I01Q5tMyYzC_-9HSoKgqsHj3Mvl0PIOcI1AqibjCCkpACaloia6gMyQ6kYLaGAQzIDxhlVIF6PyUnOawCQHHFGrqo4NDH1tlvYoV7k0LfU_7xc-25TH4fWL3q7yafkqLFdDmffd05elnfP1QNdPd0_Vrcr6rlQW4oCwEOhJCoGReHKQqOoHa-la5zWTIK2ELhndWEb5rQQnjNXl3UjtZCo-ZxcTr2bFD92IW9N32Yfus4OIe6yUYKPJCg5khd_yHXcpWEcZxgKrpjWfIRwgnyKOafQmE1qe5s-DYLZ2zOTPTPaM3t7Zj-BTZk8ssNbSL_F_4e-AOrmb6M</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Baird, Paul</creator><creator>Fardoun, Ali</creator><creator>Ouakkas, Seddik</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20081101</creationdate><title>Conformal and semi-conformal biharmonic maps</title><author>Baird, Paul ; Fardoun, Ali ; Ouakkas, Seddik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-1400c0675172066b96814db3d5bfb882508a0e3c2d6af2b844c32bd9df5845183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analysis</topic><topic>Differential Geometry</topic><topic>Euclidean space</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Harmonic analysis</topic><topic>Mapping</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baird, Paul</creatorcontrib><creatorcontrib>Fardoun, Ali</creatorcontrib><creatorcontrib>Ouakkas, Seddik</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baird, Paul</au><au>Fardoun, Ali</au><au>Ouakkas, Seddik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformal and semi-conformal biharmonic maps</atitle><jtitle>Annals of global analysis and geometry</jtitle><stitle>Ann Glob Anal Geom</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>34</volume><issue>4</issue><spage>403</spage><epage>414</epage><pages>403-414</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>We show that a conformal mapping between Riemannian manifolds of the same dimension n  ≥ 3 is biharmonic if and only if the gradient of its dilation satisfies a certain second-order elliptic partial differential equation. On an Einstein manifold solutions can be generated from isoparametric functions. We characterise those semi-conformal submersions that are biharmonic in terms of their dilation and the fibre mean curvature vector field.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10455-008-9118-8</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0232-704X
ispartof Annals of global analysis and geometry, 2008-11, Vol.34 (4), p.403-414
issn 0232-704X
1572-9060
language eng
recordid cdi_proquest_miscellaneous_743584075
source SpringerLink Journals - AutoHoldings
subjects Analysis
Differential Geometry
Euclidean space
Geometry
Global Analysis and Analysis on Manifolds
Harmonic analysis
Mapping
Mathematical Physics
Mathematics
Mathematics and Statistics
Original Paper
Partial differential equations
Studies
title Conformal and semi-conformal biharmonic maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformal%20and%20semi-conformal%20biharmonic%20maps&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=Baird,%20Paul&rft.date=2008-11-01&rft.volume=34&rft.issue=4&rft.spage=403&rft.epage=414&rft.pages=403-414&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-008-9118-8&rft_dat=%3Cproquest_cross%3E743584075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214372883&rft_id=info:pmid/&rfr_iscdi=true