Conformal and semi-conformal biharmonic maps

We show that a conformal mapping between Riemannian manifolds of the same dimension n  ≥ 3 is biharmonic if and only if the gradient of its dilation satisfies a certain second-order elliptic partial differential equation. On an Einstein manifold solutions can be generated from isoparametric function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2008-11, Vol.34 (4), p.403-414
Hauptverfasser: Baird, Paul, Fardoun, Ali, Ouakkas, Seddik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that a conformal mapping between Riemannian manifolds of the same dimension n  ≥ 3 is biharmonic if and only if the gradient of its dilation satisfies a certain second-order elliptic partial differential equation. On an Einstein manifold solutions can be generated from isoparametric functions. We characterise those semi-conformal submersions that are biharmonic in terms of their dilation and the fibre mean curvature vector field.
ISSN:0232-704X
1572-9060
DOI:10.1007/s10455-008-9118-8