Conformal and semi-conformal biharmonic maps
We show that a conformal mapping between Riemannian manifolds of the same dimension n ≥ 3 is biharmonic if and only if the gradient of its dilation satisfies a certain second-order elliptic partial differential equation. On an Einstein manifold solutions can be generated from isoparametric function...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2008-11, Vol.34 (4), p.403-414 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that a conformal mapping between Riemannian manifolds of the same dimension
n
≥ 3 is biharmonic if and only if the gradient of its dilation satisfies a certain second-order elliptic partial differential equation. On an Einstein manifold solutions can be generated from isoparametric functions. We characterise those semi-conformal submersions that are biharmonic in terms of their dilation and the fibre mean curvature vector field. |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-008-9118-8 |