Transcription Elongation Factors Repress Transcription Initiation from Cryptic Sites
Previous studies have suggested that transcription elongation results in changes in chromatin structure. Here we present studies of Saccharomyces cerevisiae Spt6, a conserved protein implicated in both transcription elongation and chromatin structure. Our results show that, surprisingly, an spt6 mut...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2003-08, Vol.301 (5636), p.1096-1099 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous studies have suggested that transcription elongation results in changes in chromatin structure. Here we present studies of Saccharomyces cerevisiae Spt6, a conserved protein implicated in both transcription elongation and chromatin structure. Our results show that, surprisingly, an spt6 mutant permits aberrant transcription initiation from within coding regions. Furthermore, transcribed chromatin in the spt6 mutant is hypersensitive to micrococcal nuclease, and this hypersensitivity is suppressed by mutational inactivation of RNA polymerase II. These results suggest that Spt6 plays a critical role in maintaining normal chromatin structure during transcription elongation, thereby repressing transcription initiation from cryptic promoters. Other elongation and chromatin factors, including Spt16 and histone H3, appear to contribute to this control. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1087374 |