Atomic transient recorder

In Bohr's model of the hydrogen atom, the electron takes about 150 attoseconds (1 as = 10 -18  s) to orbit around the proton, defining the characteristic timescale for dynamics in the electronic shell of atoms. Recording atomic transients in real time requires excitation and probing on this sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2004-02, Vol.427 (6977), p.817-821
Hauptverfasser: Kienberger, R., Goulielmakis, E., Uiberacker, M., Baltuska, A., Yakovlev, V., Bammer, F., Scrinzi, A., Westerwalbesloh, Th, Kleineberg, U., Heinzmann, U., Drescher, M., Krausz, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Bohr's model of the hydrogen atom, the electron takes about 150 attoseconds (1 as = 10 -18  s) to orbit around the proton, defining the characteristic timescale for dynamics in the electronic shell of atoms. Recording atomic transients in real time requires excitation and probing on this scale. The recent observation of single sub-femtosecond (1 fs = 10 -15  s) extreme ultraviolet (XUV) light pulses 1 has stimulated the extension of techniques of femtochemistry 2 into the attosecond regime 3 , 4 . Here we demonstrate the generation and measurement of single 250-attosecond XUV pulses. We use these pulses to excite atoms, which in turn emit electrons. An intense, waveform-controlled, few cycle laser pulse 5 obtains ‘tomographic images’ of the time-momentum distribution of the ejected electrons. Tomographic images of primary (photo)electrons yield accurate information of the duration and frequency sweep of the excitation pulse, whereas the same measurements on secondary (Auger) electrons will provide insight into the relaxation dynamics of the electronic shell following excitation. With the current ∼750-nm laser probe and ∼100-eV excitation, our transient recorder is capable of resolving atomic electron dynamics within the Bohr orbit time.
ISSN:0028-0836
1476-4687
DOI:10.1038/nature02277