ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin

Proteins contain thiol-bearing cysteine residues that are sensitive to oxidation, and this may interfere with biological function either as 'damage' or in the context of oxidant-dependent signal transduction. Cysteine thiols oxidized to sulphenic acid are generally unstable, either forming...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2003-10, Vol.425 (6961), p.980-984
Hauptverfasser: Toledano, Michel B, Biteau, Benoît, Labarre, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proteins contain thiol-bearing cysteine residues that are sensitive to oxidation, and this may interfere with biological function either as 'damage' or in the context of oxidant-dependent signal transduction. Cysteine thiols oxidized to sulphenic acid are generally unstable, either forming a disulphide with a nearby thiol or being further oxidized to a stable sulphinic acid. Cysteine-sulphenic acids and disulphides are known to be reduced by glutathione or thioredoxin in biological systems, but cysteine-sulphinic acid derivatives have been viewed as irreversible protein modifications. Here we identify a yeast protein of relative molecular mass Mr = 13,000, which we have named sulphiredoxin (identified by the US spelling 'sulfiredoxin', in the Saccharomyces Genome Database), that is conserved in higher eukaryotes and reduces cysteine-sulphinic acid in the yeast peroxiredoxin Tsa1. Peroxiredoxins are ubiquitous thiol-containing antioxidants that reduce hydroperoxides and control hydroperoxide-mediated signalling in mammals. The reduction reaction catalysed by sulphiredoxin requires ATP hydrolysis and magnesium, involving a conserved active-site cysteine residue which forms a transient disulphide linkage with Tsa1. We propose that reduction of cysteine-sulphinic acids by sulphiredoxin involves activation by phosphorylation followed by a thiol-mediated reduction step. Sulphiredoxin is important for the antioxidant function of peroxiredoxins, and is likely to be involved in the repair of proteins containing cysteine-sulphinic acid modifications, and in signalling pathways involving protein oxidation.
ISSN:0028-0836
1476-4687
DOI:10.1038/nature02075