Three-dimensional structure of forced gravity waves and lee waves
The three-dimensional structure of lee waves is investigated using a combination of linear analysis and numerical simulation. The forcings are represented by flow over a single wave (monochromatic) in the along-stream direction but of limited extent in the cross-stream direction, and by flow over is...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2004-03, Vol.61 (6), p.664-681 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The three-dimensional structure of lee waves is investigated using a combination of linear analysis and numerical simulation. The forcings are represented by flow over a single wave (monochromatic) in the along-stream direction but of limited extent in the cross-stream direction, and by flow over isolated obstacles. The flow structures considered are of constant static stability, and zero, positive, and negative basic-flow shears. Both nonhydrostatic and hydrostatic regimes are studied. Particular emphasis is placed on 1) the cross-stream structure of the waves, 2) the transition from three-dimensional to two-dimensional flow as the breadth of the obstacle is increased, 3) the criteria for three-dimensional nonhydrostatic to hydrostatic transitions, and 4) the effect of obstacle breadth-to-length aspect ratio on the wave drag for this linear system. It is shown that these aspects can in part be understood by relating the gravity waves produced by narrow-breadth obstacles to the "St. Andrew's Cross" for hydrostatic and nonhydrostatic uniform flow and for hydrostatic shear flow. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0022-4928 1520-0469 |
DOI: | 10.1175/1520-0469(2004)061<0664:tsofgw>2.0.co;2 |