The application of power-based transfer path analysis to passenger car structure-borne noise

Abstract Structure-borne noise in a passenger car is usually transmitted through multiple and/or multi-dimensional paths. Therefore, identification and control of these transfer paths are effective measures for noise reduction. A power-based transfer path analysis methodology is proposed for this pu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Journal of automobile engineering, 2008-11, Vol.222 (11), p.2011-2023
Hauptverfasser: Han, X, Guo, Y-J, Zhao, Y-E, Lin, Z-Q
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Structure-borne noise in a passenger car is usually transmitted through multiple and/or multi-dimensional paths. Therefore, identification and control of these transfer paths are effective measures for noise reduction. A power-based transfer path analysis methodology is proposed for this purpose. First, the power flow of each transfer path is estimated with an equivalent-uncoupled-system method based on linear network theory and the Thevenin equivalent theorem. Next, the correlation between the power flow of each transfer path and the sound pressure in the passenger compartment is established; then the contribution of each transfer path is ranked; meanwhile the dominant paths and their key parameters are identified through the equations of power flow calculation. Finally, these key parameters can be analysed and then improved to reduce the structure-borne noise. An illustration of this methodology is given with a passenger car model containing a power plant, three mounts, a compliant car body, and an enclosed acoustic cavity. It is demonstrated that the methodology is effective to analyse and control the structure-borne noise transfer paths.
ISSN:0954-4070
2041-2991
DOI:10.1243/09544070JAUTO750