A systematic approach to the problem of odour source localisation
Although chemical sensing is far simpler than vision or hearing, navigation in a chemical diffusion field is still not well understood. Biological studies have already demonstrated the use of various search methods (e.g., chemotaxis and biased random walk), but robotics research could provide new wa...
Gespeichert in:
Veröffentlicht in: | Autonomous robots 2006-06, Vol.20 (3), p.261-276 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although chemical sensing is far simpler than vision or hearing, navigation in a chemical diffusion field is still not well understood. Biological studies have already demonstrated the use of various search methods (e.g., chemotaxis and biased random walk), but robotics research could provide new ways to investigate principles of olfactory-based search skills (Webb, 2000; Grasso, 2001). In previous studies on odour source localisation, we have tested three biologically inspired search strategies: chemotaxis, biased random walk, and a combination of these methods (Kadar and Virk, 1998; Lytridis et al., 2001). The main objective of the present paper is to demonstrate how simulation and robot experiments could be used conjointly to systematically study these search strategies. Specifically, simulation studies are used to calibrate and test our three strategies in concentric diffusion fields with various noise levels. An experiment with a mobile robot was also conducted to assess these strategies in a real diffusion field. The results of this experiment are similar to those of simulation studies showing that chemotaxis is a more efficient but less robust strategy than biased random walk. Overall, the combined strategy seems to be superior to chemotaxis and biased random walk in both simulation and robot experiment. |
---|---|
ISSN: | 0929-5593 1573-7527 |
DOI: | 10.1007/s10514-006-7414-3 |