Structural basis for the selectivity of the external thioesterase of the surfactin synthetase

Non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) found in bacteria, fungi and plants use two different types of thioesterases for the production of highly active biological compounds. Type I thioesterases (TEI) catalyse the release step from the assembly line of the final prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2008-08, Vol.454 (7206), p.907-911
Hauptverfasser: Marahiel, Mohamed A, Strieter, Eric R, Frueh, Dominique P, Dötsch, Volker, Walsh, Christopher T, Koglin, Alexander, Bernhard, Frank, Rogov, Vladimir V, Güntert, Peter, Mofid, Mohammad R, Löhr, Frank, Wagner, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) found in bacteria, fungi and plants use two different types of thioesterases for the production of highly active biological compounds. Type I thioesterases (TEI) catalyse the release step from the assembly line of the final product where it is transported from one reaction centre to the next as a thioester linked to a 4′-phosphopantetheine (4′-PP) cofactor that is covalently attached to thiolation (T) domains. The second enzyme involved in the synthesis of these secondary metabolites, the type II thioesterase (TEII), is a crucial repair enzyme for the regeneration of functional 4′-PP cofactors of holo-T domains of NRPS and PKS systems. Mispriming of 4′-PP cofactors by acetyl- and short-chain acyl-residues interrupts the biosynthetic system. This repair reaction is very important, because roughly 80% of CoA, the precursor of the 4′-PP cofactor, is acetylated in bacteria. Here we report the three-dimensional structure of a type II thioesterase from Bacillus subtilis free and in complex with a T domain. Comparison with structures of TEI enzymes shows the basis for substrate selectivity and the different modes of interaction of TEII and TEI enzymes with T domains. Furthermore, we show that the TEII enzyme exists in several conformations of which only one is selected on interaction with its native substrate, a modified holo-T domain.
ISSN:0028-0836
1476-4687
1476-4679
DOI:10.1038/nature07161