Aspirin-like Molecules that Covalently Inactivate Cyclooxygenase-2

Many of aspirin's therapeutic effects arise from its acetylation of cyclooxygenase-2 (COX-2), whereas its antithrombotic and ulcerogenic effects result from its acetylation of COX-1. Here, aspirin-like molecules were designed that preferentially acetylate and irreversibly inactivate COX-2. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1998-05, Vol.280 (5367), p.1268-1270
Hauptverfasser: Kalgutkar, Amit S., Crews, Brenda C., Rowlinson, Scott W., Garner, Carlos, Seibert, Karen, Marnett, Lawrence J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many of aspirin's therapeutic effects arise from its acetylation of cyclooxygenase-2 (COX-2), whereas its antithrombotic and ulcerogenic effects result from its acetylation of COX-1. Here, aspirin-like molecules were designed that preferentially acetylate and irreversibly inactivate COX-2. The most potent of these compounds was o-(acetoxyphenyl)hept-2-ynyl sulfide (APHS). Relative to aspirin, APHS was 60 times as reactive against COX-2 and 100 times as selective for its inhibition; it also inhibited COX-2 in cultured macrophages and colon cancer cells and in the rat air pouch in vivo. Such compounds may lead to the development of aspirin-like drugs for the treatment or prevention of immunological and proliferative diseases without gastrointestinal or hematologic side effects.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.280.5367.1268