Spin polarization in half-metals probed by femtosecond spin excitation
Knowledge of the spin polarization is of fundamental importance for the use of a material in spintronics applications. Here, we used femtosecond optical excitation of half-metals to distinguish between half-metallic and metallic properties. Because the direct energy transfer by Elliot–Yafet scatteri...
Gespeichert in:
Veröffentlicht in: | Nature materials 2009-01, Vol.8 (1), p.56-61 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Knowledge of the spin polarization is of fundamental importance for the use of a material in spintronics applications. Here, we used femtosecond optical excitation of half-metals to distinguish between half-metallic and metallic properties. Because the direct energy transfer by Elliot–Yafet scattering is blocked in a half-metal, the demagnetization time is a measure for the degree of half-metallicity. We propose that this characteristic enables us vice versa to establish a novel and fast characterization tool for this highly important material class used in spin-electronic devices. The technique has been applied to a variety of materials where the spin polarization at the Fermi level ranges from 45 to 98%: Ni, Co
2
MnSi, Fe
3
O
4
, La
0.66
Sr
0.33
MnO
3
and CrO
2
.
It is now shown that femtosecond optical excitation can be used as a tool to investigate the spin-polarization properties of half-metals, and provide a clear distinction between those and metals. Such knowledge is of fundamental importance for the use of these materials in spintronics applications. |
---|---|
ISSN: | 1476-1122 1476-4660 |
DOI: | 10.1038/nmat2341 |