Single-step Purification by Lectin Affinity and Deglycosylation Analysis of Recombinant Human and Porcine Deoxyribonucleases IExpressed in COS-7 Cells

Human and porcine recombinant deoxyribonucleases I (DNases I) were expressed in COS-7 cells, and purified by a single-step procedure. Since affinities for concanavalin A (Con A) and wheatgerm agglutinin (WGA) were strong in these recombinant DNases I, purification using Con A-WGA mixture-agarose col...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology letters 2006-02, Vol.28 (4), p.215-221
Hauptverfasser: Fujihara, Junko, Hieda, Yoko, Xue, Yuying, Okui, Izumi, Kataoka, Kaori, Takeshita, Haruo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human and porcine recombinant deoxyribonucleases I (DNases I) were expressed in COS-7 cells, and purified by a single-step procedure. Since affinities for concanavalin A (Con A) and wheatgerm agglutinin (WGA) were strong in these recombinant DNases I, purification using Con A-WGA mixture-agarose column was performed. By this method, the enzymes in culture medium could quickly be isolated to apparent homogeneity in approx. 10 min. From 1 ml of culture medium, about 20-30 mu g of purified DNase I with a specific activity ranging from 22000 to 41000 units/mg were obtained. The purified DNases I were subjected to enzymatic deglycosylation by either peptide N-glycosidase F (PNGase F) or endoglycosidase H (Endo H). The recombinant enzyme was cleaved by PNGase F, but not by Endo H, indicating that the recombinant enzymes are modified by N-linked complex-type carbohydrate moieties. In the human recombinant DNase I, activity was decreased by PNGase F-treatment, while that of the porcine DNase I remained unaffected. The thermal stability of the human enzyme was extremely susceptible to heat following PNGase F-treatment, as was the porcine enzyme to a lesser extent. This study suggests that N-linked complex-type carbohydrate moieties may contribute to the enzymatic activity and/or thermal stability of recombinant DNases I.
ISSN:0141-5492
DOI:10.1007/s10529-005-5522-3