Sodium Current-Induced Release of Calcium from Cardiac Sarcoplasmic Reticulum
The role of sodium-calcium exchange at the sarcolemma in the release of calcium from cardiac sarcoplasmic reticulum was investigated in voltage-clamped, isolated cardiac myocytes. In the absence of calcium entry through voltage-dependent calcium channels, membrane depolarization elicited release of...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1990-04, Vol.248 (4953), p.372-376 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The role of sodium-calcium exchange at the sarcolemma in the release of calcium from cardiac sarcoplasmic reticulum was investigated in voltage-clamped, isolated cardiac myocytes. In the absence of calcium entry through voltage-dependent calcium channels, membrane depolarization elicited release of calcium from ryanodine-sensitive internal stores. This process was dependent on sodium entry through tetrodotoxin-sensitive sodium channels. Calcium release under these conditions was also dependent on extracellular calcium concentration, suggesting a calcium-induced trigger release mechanism that involves calcium entry into the cell by sodium-calcium exchange. This sodium current-induced calcium release mechanism may explain, in part, the positive inotropic effects of cardiac glycosides and the negative inotropic effects of a variety of antiarrhythmic drugs that interact with cardiac sodium channels. In response to a transient rise of intracellular sodium, sodium-calcium exchange may promote calcium entry into cardiac cells and trigger sarcoplasmic calcium release during physiologic action potentials. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.2158146 |