Revisiting the Role of the Mother Centriole in Centriole Biogenesis
Centrioles duplicate once in each cell division cycle through so-called templated or canonical duplication. SAK, also called PLK4 (SAK/PLK4), a kinase implicated in tumor development, is an upstream regulator of canonical biogenesis necessary for centriole formation. We found that overexpression of...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2007-05, Vol.316 (5827), p.1046-1050 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Centrioles duplicate once in each cell division cycle through so-called templated or canonical duplication. SAK, also called PLK4 (SAK/PLK4), a kinase implicated in tumor development, is an upstream regulator of canonical biogenesis necessary for centriole formation. We found that overexpression of SAK/PLK4 could induce amplification of centrioles in Drosophila embryos and their de novo formation in unfertilized eggs. Both processes required the activity of DSAS-6 and DSAS-4, two molecules required for canonical duplication. Thus, centriole biogenesis is a template-free self-assembly process triggered and regulated by molecules that ordinarily associate with the existing centriole. The mother centriole is not a bona fide template but a platform for a set of regulatory molecules that catalyzes and regulates daughter centriole assembly. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1142950 |