Artificial neural network ensemble-based land-cover classifiers using MODIS data
Terra and Aqua, two satellites launched by the NASA-centered International Earth Observing System project, house MODIS (moderate resolution imaging spectroradiometer) sensors. Moderate-resolution remote sensing allows the quantifying of land-surface type and extent, which can be used to monitor chan...
Gespeichert in:
Veröffentlicht in: | Artificial life and robotics 2009-03, Vol.13 (2), p.570-574 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Terra and Aqua, two satellites launched by the NASA-centered International Earth Observing System project, house MODIS (moderate resolution imaging spectroradiometer) sensors. Moderate-resolution remote sensing allows the quantifying of land-surface type and extent, which can be used to monitor changes in land cover and land use for extended periods of time. In this article, we propose land-surface classification by applying an ensemble technique based on fault masking among individual classifiers in N-version programming. An N-version programming ensemble of artificial neural networks is created, in which the majority vote result is used to predict land-surface cover from MODIS data. It is shown by experiment that an N-version programming ensemble of neural networks greatly improves the classification error rate of land-cover type. |
---|---|
ISSN: | 1433-5298 1614-7456 |
DOI: | 10.1007/s10015-008-0615-4 |