Artificial neural network ensemble-based land-cover classifiers using MODIS data

Terra and Aqua, two satellites launched by the NASA-centered International Earth Observing System project, house MODIS (moderate resolution imaging spectroradiometer) sensors. Moderate-resolution remote sensing allows the quantifying of land-surface type and extent, which can be used to monitor chan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial life and robotics 2009-03, Vol.13 (2), p.570-574
Hauptverfasser: Yamaguchi, Takashi, Mackin, Kenneth J., Nunohiro, Eiji, Park, Jong Geol, Hara, Keitaro, Matsushita, Kotaro, Ohshiro, Masanori, Yamasaki, Kazuko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Terra and Aqua, two satellites launched by the NASA-centered International Earth Observing System project, house MODIS (moderate resolution imaging spectroradiometer) sensors. Moderate-resolution remote sensing allows the quantifying of land-surface type and extent, which can be used to monitor changes in land cover and land use for extended periods of time. In this article, we propose land-surface classification by applying an ensemble technique based on fault masking among individual classifiers in N-version programming. An N-version programming ensemble of artificial neural networks is created, in which the majority vote result is used to predict land-surface cover from MODIS data. It is shown by experiment that an N-version programming ensemble of neural networks greatly improves the classification error rate of land-cover type.
ISSN:1433-5298
1614-7456
DOI:10.1007/s10015-008-0615-4