Rapidly Intensifying Hurricane Guillermo (1997). Part I: Low-Wavenumber Structure and Evolution
The structure and evolution of rapidly intensifying Hurricane Guillermo (1997) is examined using airborne Doppler radar observations. In this first part, the low-azimuthal-wavenumber component of the vortex is presented. Guillermo’s intensification occurred in an environmental flow with 7–8 m s−1 of...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2009-02, Vol.137 (2), p.603-631 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The structure and evolution of rapidly intensifying Hurricane Guillermo (1997) is examined using airborne Doppler radar observations. In this first part, the low-azimuthal-wavenumber component of the vortex is presented. Guillermo’s intensification occurred in an environmental flow with 7–8 m s−1 of deep-layer vertical shear. As a consequence of the persistent vertical shear forcing of the vortex, convection was observed primarily in the downshear left quadrant of the storm. The greatest intensification during the ∼6-h Doppler observation period coincided with the formation and cyclonic rotation of several particularly strong convective bursts through the left-of-shear semicircle of the eyewall. Some of the strongest convective bursts were triggered by azimuthally propagating low-wavenumber vorticity asymmetries. Mesoscale budget analyses of axisymmetric angular momentum and relative vorticity within the eyewall are presented to elucidate the mechanisms contributing to Guillermo’s structural evolution during this period. The observations support a developing conceptual model of the rapidly intensifying, vertically sheared hurricane in which shear-forced mesoscale ascent in the downshear eyewall is modulated by internally generated vorticity asymmetries yielding episodes of anomalous intensification. |
---|---|
ISSN: | 0027-0644 1520-0493 |
DOI: | 10.1175/2008mwr2487.1 |